

Soil and water Conservation Engineering

Presented By-

Shubham Kumar Sarangi

Asst Professor

DEPARTMENT OF AGRICULTURAL ENGINEERING, SOABE CENTURION UNIVERSITY OF TECHNOLOGY AND MANAGEMENT PARALAKHEMUNDI, ODISHA

Shaping Lives... Empowering Communities...

ESTIMATION OF EROSIVITY FROM RAINFALL DATA

1. EI₃₀ index method

2. KE > 25 index method

Shaping Lives... Empowering Communities... EI₃₀ Index Method (Wischemeir,1965)

1. Product of K.E of the storm and 30-min maximum rainfall intensity provides a best estimate of soil loss.

2. The highest average rainfall intensity in any 30-min period during the storm may be computed from the recording type rain gauge chart or mass curve.

Shaping Lives... Empowering Communities...

EI₃₀ Index Method (Wischemeir,1965)

 $EI_{30} = \Sigma KE \times I_{30(max)}$

```
KE = 210.3 + 89 \log_{10} I
```

Where,

KE = Kinetic energy of rainfall (metric
tonnesmetric
per ha per cm of rain)

I = Rainfall intensity (cm/hr)

I_{30(max)} = Maximum avg. r.f. intensity in any 30 min. period of the storm (cm/hr)

EI₃₀ Index Method (30-minute rainfall intensity)

Intensity (inch/h) (1)		Amount (inch) (2)	Energy*(ft. tons/acre) (3)	Totàl (Col. 2 x Col. 3) (4)
0-1	0.5	2.0	816	1632
1-2	1.5	1.50	974	1463
2-3	2.5	0.75	1048	786
> 3	3.5	0.40	1096	438
	4319 ft. tons/ acre			

K.E. >25 INDEX METHOD(Hudson)

For computing rainfall erosivity of tropical storms.

Estimation procedure is same as the EI₃₀ index method.

Erosion takes place only at the threshold value of rainfall intensity.

From experiment,it was obtained that rainfall intensity less than 25mm/hr are not able to detach the soil particles .

Only those rainfall intensities, which are greater than 25mm/hr are considered.

K.E. >25 INDEX METHOD(Hudson)

2. K.E. > 25 index method :

Intensity (cm)		Amount (cm)	Energy* (m. tonnes/ha cm)	Total (Col. 2 x Col. 3)
(1)		(2)	(3)	(4)
Range	Average	i intensity	trico morrisal	tim dir mi
0-3	1.5	2.5	2.19	* *
3-6	4.5	4.15	268.4	1114
6-9	7.5	2.35	288.2	677
> 9	10.5	5.25	301.2	1581
	and 00	Ansaer in		3372 m tones per ha.

