Real Matrices: Symmetric, Skew-Symmetric & Orthogonal Matrices:

Symmetric Matrix: A real square matrix $A = [a_{ij}]$ is said to be symmetric if its transposition leaves unchanged.

That is,

$$A^T = A$$

Here

 $a_{ij} = a_{ji}$

Skew-Symmetric Matrix: A real square matrix $A = [a_{ij}]$ is said to be skew-symmetric if its transposition gives the negative of A. That is,

Here

$$A^T = -A$$

 $a_{ij} = -a_{ji}$

Orthogonal Matrix: A real square matrix $A = [a_{ij}]$ is said to be Orthogonal if its transposition gives the inverse of A. That is,

 $A^T = A^{-1}$

Example1:

Let

	[-5	2	3]
A =	2	0	-4
	L 3	-4	8

 $A^T = A$

	[-5	2	3]
Then	$A^T =$	2	0	-4
	l	. 3	-4	8]

Thus

Hence A is said to be symmetric.

Example2:

Let
$$A = \begin{bmatrix} 0 & 2 & -3 \\ -2 & 0 & -4 \\ 3 & 4 & 0 \end{bmatrix}$$

Then
$$A^{T} = \begin{bmatrix} 0 & -2 & 3 \\ 2 & 0 & 4 \\ -3 & -4 & 0 \end{bmatrix}$$

Thus $A^T = -A$

Hence A is said to be skew-symmetric.

Solved Example3: Let $A = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ -\frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \end{bmatrix}$

Then

$$A^T = A^{-1}$$

Hence A is said to be Orthogonal.