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Introduction to Linear Discriminant Analysis (LDA)

The goal for any dimensional reduction method is to reduce the
dimensions of the original data for different purposes such as
visualization, decrease CPU time, ..etc..

Dimensionality reduction techniques are important in many
applications related to machine learning, data mining, Bioinformatics,
biometric and information retrieval.

There are two types of dimensionality reduction methods, namely,
supervised and unsupervised.

Supervised (e.g. LDA).
Unsupervised (e.g. PCA).
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Introduction to Linear Discriminant Analysis (LDA)

The Linear Discriminant Analysis (LDA) technique is developed to
transform the features into a lower dimensional space, which
maximizes the ratio of the between-class variance to the within-class
variance, thereby guaranteeing maximum class separability.

J(W ) =
W TSB W

W TSW W
(1)

There are two types of LDA technique to deal with classes:
class-dependent and class-independent.

In the class-dependent LDA, one separate lower dimensional space is
calculated for each class to project its data on it,
In the class-independent LDA, each class will be considered as a
separate class against the other classes. In this type, there is just one
lower dimensional space for all classes to project their data on it.
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Theoretical background to LDA Definition of LDA

Given the original data matrix X = {x1, x2, . . . , xN}, where xi
represents the ith sample, pattern, or observation and N is the total
number of samples.

Each sample is represented by M features (xi ∈ RM ). In other
words, each sample is represented as a point in M -dimensional space.

The data matrix is partitioned into c classes as follows,
X = [ω1, ω2, . . . , ωc]. Thus, Each class has ni samples.

The total number of samples (N) is calculated as follows,
N =

∑c
i=1 ni.
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Theoretical background to LDA Definition of LDA

The goal of the LDA technique is to project the original data matrix
onto a lower dimensional space. To achieve this goal, three steps
needed to be performed.

1 The first step is to calculate the separability between different classes
(i.e. the distance between the means of different classes), which is
called the between-class variance or between-class matrix.

2 The second step is to calculate the distance between the mean and
the samples of each class, which is called the within-class variance or
within-class matrix.

3 The third step is to construct the lower dimensional space which
maximizes the between-class variance and minimizes the within-class
variance.
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Theoretical background to LDA Definition of LDA
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Theoretical background to LDA Calculating the Between-Class variance (SB)

To calculate the between-class variance (SB), the separation distance
between different classes which is denoted by (mi −m) will be
calculated as follows,

(mi −m)2 = (W Tµi −W Tµ)2 =W T (µi − µ)(µi − µ)TW (2)

where,

mi represents the projection of the mean of the ith class and it is
calculated as follows, mi =W Tµi,

m is the projection of the total mean of all classes and it is
calculated as follows, m =W Tµ,

W represents the transformation matrix of LDA,

µj(1×M) represents the mean of the ith class (µj =
1
nj

∑
xi∈ωj

xi),

and

µ(1×M) is the total mean of all classes
(µ = 1

N

∑N
i=1 xi =

1
c

∑c
j=1 µj), where c represents the total number

of classes.
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Theoretical background to LDA Calculating the Between-Class variance (SB)

The term (µi − µ)(µi − µ)T in Equation (2) represents the
separation distance between the mean of the ith class (µi) and the
total mean (µ), or simply it represents the between-class variance of
the ith class (SBi).

Substitute SBi into Equation (2) as follows,

(mi −m)2 =W TSBi W (3)

The total between-class variance is calculated as follows,
(SB =

∑c
i=1 niSBi).
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Theoretical background to LDA Calculating the Between-Class variance (SB)
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Theoretical background to LDA Calculating the Within-Class variance (SW )

The within-class variance of the ith class (SWi) represents the
difference between the mean and the samples of that class.

LDA technique searches for a lower-dimensional space, which is used
to minimize the difference between the projected mean (mi) and the
projected samples of each class (W Txi), or simply minimizes the
within-class variance.∑

xi∈ωj

(W Txi −mj)
2

=
∑
xi∈ωj

(W Txi −W Tµj)
2

=
∑
xi∈ωj

W T (xi − µj)2W

=
∑
xi∈ωj

W T (xi − µj)(xi − µj)TW

=
∑
xi∈ωj

W TSWj W

(4)
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Theoretical background to LDA Calculating the Within-Class variance (SW )

From Equation (4), the within-class variance for each class can be
calculated as follows, SWj = dTj ∗ dj =

∑nj

i=1(xij − µj)(xij − µj)T ,

where xij represents the ith sample in the jth class as shown in Fig.
(2, step (E, F)), and dj is the centering data of the jth class, i.e.
dj = ωj − µj = {xi}

nj

i=1 − µj .
Step (F) in the figure illustrates how the within-class variance of the
first class (SW1) in our example is calculated.

The total within-class variance represents the sum of all within-class
matrices of all classes (see Fig. (2, step (F))), and it can be
calculated as in Equation (5).

SW =

c∑
i=1

SWi =
∑
xi∈ω1

(xi − µ1)(xi − µ1)T +
∑
xi∈ω2

(xi − µ2)(xi − µ2)T

+ · · ·+
∑
xi∈ωc

(xi − µc)(xi − µc)T

(5)
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Theoretical background to LDA Calculating the Within-Class variance (SW )
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Theoretical background to LDA Constructing the lower dimensional space

After calculating the between-class variance (SB) and within-class
variance (SW ), the transformation matrix (W ) of the LDA technique
can be calculated as in Equation (1), which can be reformulated as
an optimization problem as in Equation (6).

SW W = λSB W (6)

where λ represents the eigenvalues of the transformation matrix (W ).

The solution of this problem can be obtained by calculating the
eigenvalues (λ) and eigenvectors (V = {v1, v2, . . . , vM}) of
W = S−1W SB, if SW is non-singular.
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Theoretical background to LDA Constructing the lower dimensional space

The eigenvalues are scalar values, while the eigenvectors are non-zero
vectors provides us with the information about the LDA space.

The eigenvectors represent the directions of the new space, and the
corresponding eigenvalues represent the scaling factor, length, or the
magnitude of the eigenvectors.

Thus, each eigenvector represents one axis of the LDA space and the
associated eigenvalue represents the robustness of this eigenvector.
The robustness of the eigenvector reflects its ability to discriminate
between different classes and decreases the within-class variance of
each class, hence meets the LDA goal.

Thus, the eigenvectors with the k highest eigenvalues are used to
construct a lower dimensional space (Vk), while the other
eigenvectors ({vk+1, vk+2, vM}) are neglected.
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Theoretical background to LDA Constructing the lower dimensional space
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Figure: Visualized steps to calculate a lower dimensional subspace of the LDA
technique.
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Theoretical background to LDA Constructing the lower dimensional space
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Theoretical background to LDA Projection onto the LDA space

The dimension of the original data matrix (X ∈ RN×M ) is reduced
by projecting it onto the lower dimensional space of LDA
(Vk ∈ RM×k) as denoted in Equation (7).

The dimension of the data after projection is k; hence, M − k
features are ignored or deleted from each sample.

Each sample (xi) which was represented as a point a M -dimensional
space will be represented in a k-dimensional space by projecting it
onto the lower dimensional space (Vk) as follows, yi = xiVk.

Y = XVk (7)
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Theoretical background to LDA Projection onto the LDA space
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Figure: Projection of the original samples (i.e. data matrix) on the lower
dimensional space of LDA (Vk).
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Theoretical background to LDA Projection onto the LDA space
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Theoretical background to LDA Example of two LDA subspaces
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Figure: A visualized comparison between the two lower-dimensional sub-spaces
which are calculated using three different classes.
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Theoretical background to LDA Example of two LDA subspaces

The above Figure shows a comparison between two
lower-dimensional sub-spaces.

Each class has five samples, and all samples are represented by two
features only (xi ∈ R2) to be visualized. Thus, each sample is
represented as a point in two-dimensional space.

The transformation matrix (W (2× 2)) is calculated as mentioned
before.

The eigenvalues (λ1 and λ2) and eigenvectors (i.e. sub-spaces)
(V = {v1, v2}) of W are then calculated. Thus, there are two
eigenvectors or sub-spaces.
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Theoretical background to LDA Example of two LDA subspaces

A comparison between the two lower-dimensional sub-spaces shows
the following notices:

First, the separation distance between different classes when the data
are projected on the first eigenvector (v1) is much greater than when
the data are projected on the second eigenvector (v2). As shown in
the figure, the three classes are efficiently discriminated when the data
are projected on v1. Moreover, the distance between the means of the
first and second classes (m1 −m2) when the original data are
projected on v1 is much greater than when the data are projected on
v2, which reflects that the first eigenvector discriminates the three
classes better than the second one.
Second, the within-class variance when the data are projected on v1 is
much smaller than when it projected on v2. For example, SW1

when
the data are projected on v1 is much smaller than when the data are
projected on v2. Thus, projecting the data on v1 minimizes the
within-class variance much better than v2.

From these two notes, we conclude that the first eigenvector meets
the goal of the lower-dimensional space of the LDA technique than
the second eigenvector; hence, it is selected to construct a
lower-dimensional space.
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Theoretical background to LDA Example of two LDA subspaces
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Theoretical background to LDA Computational complexity of LDA

The computational complexity for the first four steps, common in
both class-dependent and class-independent methods, are computed
as follows.

As illustrated in Algorithm (1) (see the paper), in step (2), to
calculate the mean of the ith class, there are niM additions and M
divisions, i.e., in total, there are (NM + cM) operations.

In step (3), there are NM additions and M divisions, i.e., there are
(NM +M) operations.

The computational complexity of the fourth step is
c(M +M2 +M2), where M is for µi − µ, M2 for
(µi − µ)(µi − µ)T , and the last M2 is for the multiplication between
ni and the matrix (µi − µ)(µi − µ)T .

In the fifth step, there are N(M +M2) operations, where M is for
(xij − µj) and M2 is for (xij − µj)(xij − µj)T .

In the sixth step, there are M3 operations to calculate S−1W , M3 is
for the multiplication between S−1W and SB, and M3 to calculate the
eigenvalues and eigenvectors.
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Theoretical background to LDA Computational complexity of LDA

In class-independent method, the computational complexity is
O(NM2) if N > M ; otherwise, the complexity is O(M3).
In class-dependent algorithm, the number of operations to calculate
the within-class variance for each class SWj in the sixth step is
nj(M +M2), and to calculate SW , N(M +M2) operations are
needed. Hence, calculating the within-class variance for both LDA
methods are the same. In the seventh step and eighth, there are M3

operations for the inverse, M3 for the multiplication of S−1Wi
SB, and

M3 for calculating eigenvalues and eigenvectors. These two steps are
repeated for each class which increases the complexity of the
class-dependent algorithm. Totally, the computational complexity of
the class-dependent algorithm is O(NM2) if N > M ; otherwise, the
complexity is O(cM3). Hence, the class-dependent method needs
computations more than class-independent method.
Given 40 classes and each class has ten samples. Each sample is
represented by 4096 features (M > N). Thus, the computational
complexity of the class-independent method is O(M3) = 40963,
while the class-dependent method needs O(cM3) = 40× 40963.
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Theoretical background to LDA Computational complexity of LDA
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Theoretical background to LDA Class-Dependent vs. Class-Independent methods

The aim of the two methods (class-dependent vs. class-independent)
of the LDA is to calculate the LDA space.

In the class-dependent LDA, one separate lower dimensional space is
calculated for each class as follows, Wi = S−1Wi

SB, where Wi

represents the transformation matrix for the ith class. Thus,
eigenvalues and eigenvectors are calculated for each transformation
matrix separately. Hence, the samples of each class are projected on
their corresponding eigenvectors.

In the class-independent method, one lower dimensional space is
calculated for all classes. Thus, the transformation matrix is
calculated for all classes, and the samples of all classes are projected
on the selected eigenvectors.
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Numerical example

Given two different classes, ω1(5× 2) and ω2(6× 2) have (n1 = 5) and
(n2 = 6) samples, respectively. Each sample in both classes is represented
by two features (i.e. M = 2) as follows:

ω1 =


1.00 2.00
2.00 3.00
3.00 3.00
4.00 5.00
5.00 5.00

 and ω2 =



4.00 2.00
5.00 0.00
5.00 2.00
3.00 2.00
5.00 3.00
6.00 3.00

 (8)

µ1 =
[
3.00 3.60

]
, µ2 =

[
4.67 2.00

]
, and (9)

µ =
[
5
11µ1

6
11µ2

]
=
[
3.91 2.727

]
(10)
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Numerical example

To calculate SB1

SB1 = n1(µ1 − µ)T (µ1 − µ) = 5[−0.91 0.87]T [−0.91 0.87]

=

[
4.13 −3.97
−3.97 3.81

]
(11)

Similarly, SB1

SB2 =

[
3.44 −3.31
−3.31 3.17

]
(12)

The total between-class variance is calculated a follows:

SB = SB1 + SB2 =

[
4.13 −3.97
−3.97 3.81

]
+

[
3.44 −3.31
−3.31 3.17

]
=

[
7.58 −7.27
−7.27 6.98

] (13)
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Numerical example

To calculate SW , first calculate mean-centering data.

d1 =


−2.00 −1.60
−1.00 −0.60
0.00 −0.60
1.00 1.40
2.00 1.40

 and d2 =



−0.67 0.00
0.33 −2.00
0.33 0.00
−1.67 0.00
0.33 1.00
1.33 1.00

 (14)
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Numerical example

After centering the data, in class-independent method, the
within-class variance for each class (SWi(2× 2)) is calculated as
follows, SWj = dTj ∗ dj =

∑nj

i=1(xij − µj)T (xij − µj), where xij
represents the ith sample in the jth class.

The total within-class matrix (SW (2× 2)) is then calculated as
follows, SW =

∑c
i=1 SWi .

SW1 =

[
10.00 8.00
8.00 7.20

]
, SW2 =

[
5.33 1.00
1.00 6.00

]
,

SW =

[
15.33 9.00
9.00 13.20

] (15)

Alaa Tharwat December 30, 2017 37 / 66



Numerical example

The transformation matrix (W ) can be obtained as follows,
W = S−1W SB, and the values of (S−1W ) and (W ) are as follows:

S−1W =

[
0.11 −0.07
−0.07 0.13

]
and W =

[
1.37 −1.32
−1.49 1.43

]
(16)

The eigenvalues (λ(2× 2)) and eigenvectors (V (2× 2)) of W are
then calculated as follows:

λ =

[
0.00 0.00
0.00 2.81

]
and V =

[
−0.69 0.68
−0.72 −0.74

]
(17)

The second eigenvector (V2) has corresponding eigenvalue more than
the first one (V1), which reflects that, the second eigenvector is more
robust than the first one; hence, it is selected to construct the lower
dimensional space.
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Numerical example

The original data is projected on the lower dimensional space, as
follows, yi = ωi V2, where yi(ni × 1) represents the data after
projection of the ith class, and its values will be as follows:

y1 = ω1V2 =


1.00 2.00
2.00 3.00
3.00 3.00
4.00 5.00
5.00 5.00


[
0.68
−0.74

]
=


−0.79
−0.85
−0.18
−0.97
−0.29

 (18)

Similarly, y2 is as follows:

y2 = ω2V2 =



1.24
3.39
1.92
0.56
1.18
1.86

 (19)
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Numerical example

The data of each class is completely discriminated when it is
projected on the second eigenvector (see Fig.)(b)) than the first one
(see Fig. a)).
The within-class variance (i.e. the variance between the same class
samples) of the two classes are minimized when the data are
projected on the second eigenvector. The within-class variance of the
first class is small compared with as shown Fig. (a).
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Figure: Probability density function of the projected data of the first example,
(a) the projected data on V1, (b) the projected data on V2.
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Numerical example

For class-dependent method, the aim is to calculate a separate
transformation matrix (Wi) for each class.

The within-class variance for each class (SWi(2× 2)) is calculated as
in class-independent method.

The transformation matrix (Wi) for each class is then calculated as
follows, Wi = S−1Wi

SB. The values of the two transformation
matrices (W1 and W2) will be as follows:

W1 = S−1W1
SB =

[
10.00 8.00
8.00 7.20

]−1 [
7.58 −7.27
−7.27 6.98

]
=

[
0.90 −1.00
−1.00 1.25

] [
7.58 −7.27
−7.27 6.98

]
=

[
14.09 −13.53
−16.67 16.00

] (20)
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Numerical example

Similarly, W2 is calculated as follows:

W2 =

[
1.70 −1.63
−1.50 1.44

]
(21)

The eigenvalues (λi) and eigenvectors (Vi) for each transformation
matrix (Wi) are calculated, and the values of the eigenvalues and
eigenvectors are shown below.

λω1 =

[
0.00 0.00
0.00 30.01

]
and Vω1 =

[
−0.69 0.65
−0.72 −0.76

]
(22)

λω2 =

[
3.14 0.00
0.00 0.00

]
and Vω2 =

[
0.75 0.69
−0.66 0.72

]
(23)

where λωi and Vωi represent the eigenvalues and eigenvectors of the
ith class, respectively.
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Numerical example

From the results shown (above) it can be seen that, the second

eigenvector of the first class (V
{2}
ω1 ) has corresponding eigenvalue

more than the first one; thus, the second eigenvector is used as a

lower dimensional space for the first class as follows, y1 = ω1 ∗ V {2}ω1 ,
where y1 represents the projection of the samples of the first class.

The first eigenvector in the second class (V
{1}
ω2 ) has corresponding

eigenvalue more than the second one. Thus, V
{1}
ω2 is used to project

the data of the second class as follows, y2 = ω2 ∗ V {1}ω2 , where y2
represents the projection of the samples of the second class.

The values of y1 and y2 will be as follows:

y1 =


−0.88
−1.00
−0.35
−1.24
−0.59

 and y2 =



1.68
3.76
2.43
0.93
1.77
2.53

 (24)
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Numerical example

The Figure (below) shows a pdf graph of the projected data (i.e. y1

and y2) on the two eigenvectors (V
{2}
ω1 and V

{1}
ω2 ) and a number of

findings are revealed the following:
First, the projection data of the two classes are efficiently
discriminated.
Second, the within-class variance of the projected samples is lower
than the within-class variance of the original samples.
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Figure: Probability density function (pdf) of the projected data using

class-dependent method, the first class is projected on V
{2}
ω1 , while the second

class is projected on V
{1}
ω2 .
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Numerical example
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Numerical example

Figure (above) shows a further explanation of the two methods as
following:

Class-Independent: As shown from the figure, there are two
eigenvectors, V1 (dotted black line) and V2 (solid black line). The
differences between the two eigenvectors are as follows:

The projected data on the second eigenvector (V2) which has the
highest corresponding eigenvalue will discriminate the data of the two
classes better than the first eigenvector. As shown in the figure, the
distance between the projected means m1 −m2 which represents SB ,
increased when the data are projected on V2 than V1.
The second eigenvector decreases the within-class variance much
better than the first eigenvector. The above figure illustrates that the
within-class variance of the first class (SW1) was much smaller when it
was projected on V2 than V1.
As a result of the above two findings, V2 is used to construct the LDA
space.
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Numerical example

Figure (above) shows a further explanation of the two methods as
following:

Class-Dependent: As shown from the figure, there are two

eigenvectors, V
{2}
ω1 (red line) and V

{1}
ω2 (blue line), which represent the

first and second classes, respectively. The differences between the two
eigenvectors are as following:

Projecting the original data on the two eigenvectors discriminates
between the two classes. As shown in the figure, the distance between
the projected means m1 −m2 is larger than the distance between the
original means µ1 − µ2.
The within-class variance of each class is decreased. For example, the
within-class variance of the first class (SW1) is decreased when it is
projected on its corresponding eigenvector.
As a result of the above two findings, V

{2}
ω1 and V

{1}
ω2 are used to

construct the LDA space.
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Numerical example

Figure (above) shows a further explanation of the two methods as
following:

Class-Dependent vs. Class-Independent: The two LDA methods are
used to calculate the LDA space, but a class-dependent method
calculates separate lower dimensional spaces for each class which has
two main limitations: (1) it needs more CPU time and calculations
more than class-independent method; (2) it may lead to SSS problem
because the number of samples in each class affects the singularity of
SWi

.

These findings reveal that the standard LDA technique used the
class-independent method rather than using the class-dependent
method.
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Numerical example

Introduction to Linear Discriminant Analysis (LDA).

Theoretical Background to LDA.

Definition of LDA.
Calculating the Between-Class Variance (SB).
Calculating the Within-Class Variance (SW ).
Constructing the Lower Dimensional Space.
Projection onto the LDA space.
Example of Two LDA Subspaces.
Computational Complexity of LDA.
Class-Dependent vs. Class-Independent Methods.

Numerical Example.

Main Problems of LDA.

Linearity problem.
Small Sample Size Problem.

Conclusions.

Alaa Tharwat December 30, 2017 49 / 66



Main problems of LDA

Although LDA is one of the most common data reduction
techniques, it suffers from two main problems:

Small Sample Size (SSS) and
linearity problems.
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Main problems of LDA Linearity problem

LDA technique is used to find a linear transformation that
discriminates between different classes.

If the classes are non-linearly separable, LDA cannot find a lower
dimensional space. In other words, LDA fails to find the LDA space
when the discriminatory information are not in the means of classes.

The Figure (below) shows how the discriminatory information does
not exist in the mean, but in the variance of the data. This is
because the means of the two classes are equal.

The mathematical interpretation for this problem is as follows: if the
means of the classes are approximately equal, so the SB and W will
be zero. Hence, the LDA space cannot be calculated.
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Main problems of LDA Linearity problem

 µ µ2µ1= =x  x

ω1 

 

Mapping or Transformation

 

 

Non-Linearly Seprable Classes

 

 

Linearly Seprable Classes

 

ω1 

ω1 

ω1 

ω1 ω1 ω2 

ω2 

ω2 

ω2 

ω2 

ω2 

Figure: Two examples of two non-linearly separable classes, top panel shows how
the two classes are non-separable, while the bottom shows how the
transformation solves this problem and the two classes are linearly separable.
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Main problems of LDA Linearity problem

One of the solutions of the linearity problem is based on the
transformation concept, which is known as a kernel methods or
functions.

The kernel idea is applied in Support Vector Machine (SVM),
Support Vector Regression (SVR), PCA, and LDA.

The previous figure illustrates how the transformation is used to map
the original data into a higher dimensional space; hence, the data will
be linearly separable, and the LDA technique can find the lower
dimensional space in the new space.

The figure (next slide) graphically and mathematically shows how
two non-separable classes in one-dimensional space are transformed
into a two-dimensional space (i.e. higher dimensional space); thus,
allowing linear separation.
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Main problems of LDA Linearity problem
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mapping the samples of the top space are linearly separable.
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Main problems of LDA Linearity problem

Let φ represents a nonlinear mapping to the new feature space Z.
The transformation matrix (W ) in the new feature space (Z) is
calculated as follows:

F (W ) = max

∣∣∣∣∣W TSφBW

W TSφWW

∣∣∣∣∣ (25)

where W is a transformation matrix and Z is the new feature space.
The between-class matrix (SφB) and the within-class matrix (SφW ) are
defined as follows:

SφB =

c∑
i=1

ni(µ
φ
i − µ

φ)(µφi − µ
φ)T (26)

SφW =

c∑
j=1

nj∑
i=1

(φ{xij} − µφj )(φ{xij} − µ
φ
j )
T (27)

where µφi = 1
ni

∑ni
i=1 φ{xi} and µφ = 1

N

∑N
i=1 φ{xi} =

∑c
i=1

ni
N µ

φ
i
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Main problems of LDA Linearity problem

Thus, in kernel LDA, all samples are transformed non-linearly into a
new space Z using the function φ.

In other words, the φ function is used to map the original features
into Z space by creating a nonlinear combination of the original
samples using a dot-products of it.

There are many types of kernel functions to achieve this aim.
Examples of these function include Gaussian or Radial Basis Function
(RBF), K(xi, xj) = exp(−||xi − xj ||2/2σ2), where σ is a positive
parameter, and the polynomial kernel of degree d,
K(xi, xj) = (〈xi, xj〉+ c)d.
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Main problems of LDA Linearity problem
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Main problems of LDA Small Sample Size (SSS) problem

Problem Definition

Singularity, Small Sample Size (SSS), or under-sampled problem is one
of the big problems of LDA technique.
This problem results from high-dimensional pattern classification tasks
or a low number of training samples available for each class compared
with the dimensionality of the sample space.
The SSS problem occurs when the SW is singular1.
The upper bound of the rank2 of SW is N − c, while the dimension of
SW is M ×M .
Thus, in most cases M >> N − c which leads to SSS problem.
For example, in face recognition applications, the size of the face
image my reach to 100× 100 = 10000 pixels, which represent
high-dimensional features and it leads to a singularity problem.

1A matrix is singular if it is square, does not have a matrix inverse, the determinant
is zeros; hence, not all columns and rows are independent

2The rank of the matrix represents the number of linearly independent rows or
columns
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Main problems of LDA Small Sample Size (SSS) problem

Common Solutions to SSS Problem.
Regularization (RLDA):

In regularization method, the identity matrix is scaled by multiplying it
by a regularization parameter (η > 0) and adding it to the within-class
matrix to make it non-singular. Thus, the diagonal components of the
within-class matrix are biased as follows, SW = SW + ηI.
However, choosing the value of the regularization parameter requires
more tuning and a poor choice for this parameter can degrade the
performance of the method.
The parameter η is just added to perform the inverse of SW and has
no clear mathematical interpretation.
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Main problems of LDA Small Sample Size (SSS) problem

Common Solutions to SSS Problem.
Sub-space:

In this method, a non-singular intermediate space is obtained to
reduce the dimension of the original data to be equal to the rank of
SW ; hence, SW becomes full-rank3, and then SW can be inverted.
For example, Belhumeur et al. used PCA, to reduce the dimensions of
the original space to be equal to N − c (i.e. the upper bound of the
rank of SW ).
However, losing some discriminant information is a common drawback
associated with the use of this method.

Null Space:

There are many studies proposed to remove the null space of SW to
make SW full-rank; hence, invertible.
The drawback of this method is that more discriminant information is
lost when the null space of SW is removed, which has a negative
impact on how the lower dimensional space satisfies the LDA goal.

3A is a full-rank matrix if all columns and rows of the matrix are independent, (i.e.
rank(A)= # rows= #cols)
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Main problems of LDA Small Sample Size (SSS) problem

Four different variants of the LDA technique that are used to solve
the SSS problem are introduced as follows:

PCA + LDA technique:

In this technique, the original d-dimensional features are first reduced
to h-dimensional feature space using PCA, and then the LDA is used
to further reduce the features to k-dimensions.
The PCA is used in this technique to reduce the dimensions to make
the rank of SW is N − c; hence, the SSS problem is addressed.
However, the PCA neglects some discriminant information, which may
reduce the classification performance.

Direct LDA technique

Direct LDA (DLDA) is one of the well-known techniques that are used
to solve the SSS problem.
This technique has two main steps.
In the first step, the transformation matrix, W , is computed to
transform the training data to the range space of SB .
In the second step, the dimensionality of the transformed data is
further transformed using some regulating matrices.
The benefit of the DLDA is that there is no discriminative features are
neglected as in PCA+LDA technique.
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Main problems of LDA Small Sample Size (SSS) problem

Four different variants of the LDA technique that are used to solve
the SSS problem are introduced as follows:

Regularized LDA technique:

In the Regularized LDA (RLDA), a small perturbation is add to the
SW matrix to make it non-singular. This regularization can be applied
as follows:

(SW + ηI)−1SBwi = λiwi (28)

where η represents a regularization parameter. The diagonal
components of the SW are biased by adding this small perturbation.
However, the regularization parameter need to be tuned and poor
choice of it can degrade the generalization performance.

W = arg max
|WTSWW |=0

|W TSBW | (29)
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Main problems of LDA Small Sample Size (SSS) problem

Four different variants of the LDA technique that are used to solve
the SSS problem are introduced as follows:

Null LDA technique
The aim of NLDA is to find the orientation matrix W .
Firstly, the range space of the SW is neglected, and the data are
projected only on the null space of SW as follows, SWW = 0.
Secondly, the aim is to search for W that satisfies SBW = 0 and
maximizes |WTSBW |.
The higher dimensionality of the feature space may lead to
computational problems. This problem can be solved by (1) using the
PCA technique as a pre-processing step, i.e. before applying the
NLDA technique, to reduce the dimension of feature space to be
N − 1; by removing the null space of ST = SB + SW , (2) using the
PCA technique before the second step of the NLDA technique.
Mathematically, in the Null LDA (NLDA) technique, the h column
vectors of the transformation matrix W = [w1, w2, . . . , wh] are taken
to be the null space of the SW as follows, wT

i SWwi = 0, ∀i = 1 . . . h,
where wT

i SBwi 6= 0. Hence, M − (N − c) linearly independent vectors
are used to form a new orientation matrix, which is used to maximize
|WTSBW | subject to the constraint |WTSWW | = 0 as follows,
W = arg max

|WT SWW |=0
|WTSBW |.
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Conclusions

LDA is an easy to implement dimensionality reduction method.

The goals of LDA is to increase between class variance and decrease
within-class variance.

The value of eigenvalues reflect the robustness of the corresponding
eigenvector.

For more details, read the original paper ”Alaa Tharwat, Tarek
Gaber, Abdelhameed Ibrahim and Aboul Ella Hassanien. ”Linear
discriminant analysis: A detailed tutorial” AI Communications 30
(2017) 169-190”

For more questions, send to engalaatharwat@hotmail.com
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