METABOLISM OF LIPIDS

METABOLISM OF FAT

- The lipids of metabolic significance include synthesis and degradation of
- triglycerides
- phospholipids
- steroids together with long chain fatty acids
- glycerol and
- ketone bodies
- Oxidation of triglycerides takes place in the adipose tissue.
- The complete degradation of fatty acid in the body leads to the oxidation to CO₂ and water

b) Metabolism of fatty acids

The fatty acids components of the lipids entering the liver also have several different pathways

- 1. Oxidation to CO2 with ATP production
- 2. Biosynthesis of cholesterol
- 3. Biosynthesis of lipids of plasma lipoproteins (Triglyceride and phospholipids)
- 4. Formation of free fatty acids
- 5. Formation of ketone bodies

a) Metabolism of Triglycerides

- Triglycerides are first converted to fatty acids and glycerol mostly in adipose tissue.
- The fatty acids are released into the plasma where they combine with serum albumin.
- Long chain fatty acids are oxidized in liver, heart, kidney, muscle, lung, brain and adipose tissue.
- Glycerol is utilized by liver, kidney, intestine and lactating mammary gland where the activating enzyme glycerokinase is present.

1. Oxidation of fatty acids to CO2 with ATP production

- Fatty acids are oxidized by β , α , and ω oxidation. β -Oxidation is the most important pathway for the production of energy.
- The term β -oxidation means the oxidation takes place in the β -carbon in the fatty acid with the removal of 2 carbon atoms at a time from the carboxyl end of the molecule.
- The saturated fatty acids containing even number and odd number of carbon atoms and the unsaturated fatty acids are oxidized by β -oxidation.

(a) β-Oxidation of saturated <u>fatty acid</u>s

- Saturated <u>fatty acid</u>s are oxidized to acetyl-CoA by β oxidation.
- It takes place in mitochondria.
- Five steps are involved and each step involves acy1-CoA derivatives catalyzed by separate enzymes, utilizes NAD+ and FAD as coenzymes, and generates ATP.
- <u>Fatty acid</u> oxidation is an aerobic process, requiring the presence of oxygen.

Step 1 Activation of **Fatty Acids**

- Long chain <u>fatty acids</u> are first converted to an 'active <u>fatty</u> <u>acid</u>' or acyl CoA in the cytosol
- But activation of lower <u>fatty acids</u> occurs within the mitochondria.
- Thiokinase is found both inside and outside the mitochondria.
 Thiokinase
 Fatty acid+ATP+coenzyme A +Mg2+→Acyl CoA +AMP
- The presence of inorganic pyrophosphatase ensures that activation goes to completion by facilitating the loss of the additional high-energy phosphate associated with pyrophosphate.
- Two high energy phosphates are expended during the activation of each <u>fatty acid</u> molecule.

• (i)Transport of smallerfatty acids

- Small fatty acids are able to penetrate the inner membrane off mitochondria and become oxidized within the mitochondria.
- (ii) Transport of long-chainfatty acids
- Long-chain fatty acid penetrate the inner mitochondrial membrane only as carnitine derivatives.
- Carnitine acyl transferase I, -in outer mitochondrial membrane, converts long-chain acyl CoA to acyl carnitine, -penetrate the inner membrane of mitochondria
- **Carnitine-acyl carnitine translocase** -in mitochondria, catalyses the transfer the acylcarnitine into inner membrane.
- Carnitine acyl transferase II- in the inner mitochondrial membrane, converts acyl carnitine to long-chain acyl CoA and carnitine.
- Acyl CoA then undergoes further reactions of β-oxidation

Step 2 De<u>hydrogenation</u> of Aceyl CoA

Aceyl CoA dehydrogenase

Acyl CoA + NAD⁺ $\leftrightarrow \alpha$ - β unsaturated acyl CoA + NADH + H⁺

NADH + H⁺ is reoxidised via electron transport chain.

Step 3 Conversion of α-β unsaturated acyl CoA to β hydroxyl acyl CoA

Enoyl-CoA hydratase.

α-β unsaturated acyl CoA + $H_2O \leftrightarrow \beta$ hydroxyl acyl CoA

Step4 De<u>hydrogenation</u> at the β-carbon of β-hydroxyacyl CoA

β-hydroxyacyl-CoA dehydrogenase β hydroxyl acyl CoA +NAD⁺↔β-ketoacyl-CoA+ NADH+H ⁺

The NADH+H⁺ formed is reoxidised via electron transport chain.

Step5. Cleavage by thiolase

Thiolase

$\textbf{\beta-ketoacyl-CoA} \leftrightarrow \textbf{Acetyl-CoA} + acyl-CoA$

- The products of this reaction are acetyl-CoA and an acyl-CoA derivative containing two carbons less than the original acyl-CoA molecule that underwent this oxidation.
- The acyl-CoA formed in the cleavage reaction renters the oxidative pathway at reaction 1.

A long chain fatty acid may be degraded completely to acetyl-CoA (C2 units).

In the case of palmitic acid the reactions are repeated 7 times and 8 molecules of acetyl CoA are formed.

Since acetyl-CoA can be oxidized to CO_2 and water via the citric acid cycle, the complete oxidation of fatty acids is achieved

Production of ATP

Synthesis of high energy phosphates (ATP) for Electron transport chain reoxidation of FADH2 and NADH of formation of 7 acetyl-CoA molecules for β -oxidation of palmitate : **five**.

No.of ATP derived from β -Oxidation Since 8 molecules of acetyl CoA are formed : 7x5 = 35

No. of ATP formed on oxidation of 8 acetyl-CoA molecules (via citric acid cycle) : 8x12 = 96

-2

- ATP utilized for initial activation of the fatty acid:
 - Net total yield : 129

Calorific value per mole of palmitic acid:

- The calorific value is 129x7.6=980 K.cal/mole.
- The calorific value per mole of combustion of palmitic acid is 2340 K.cal/mole.
- The process captures as high-energy phosphate in the order of 41% of the total energy of combustion of the fatty acid.

(β)Oxidation of a fatty acid with an odd number of carbon atoms

Fatty acids with an odd number of carbon atoms are oxidized by the pathway of β - oxidation, producing acetyl-CoA until a three- carbon (propionyl-CoA) residue remains.

This compound is converted to succinyl-CoA, a constituent of the citric acid cycle and metabolized. **Propionyl-CoA carboxylase Propionyl CoA + CO2 + H₂O \rightarrow D-methylmalonyl-CoA** D-Methylmalonyl-CoA is converted to its steroisomer, Lmethylmalonyl-CoA, by methylmalonyl-coA racemase before its final isomerization to succinyl-CoA by the enzyme methylmalonyl-CoA isomerase.

Methylmalonyl-CoA racemase D-Methylmalonyl-CoA ↔ L- methylmalonyl-CoA

Methylmalonyl-CoA isomerase L- methylmalonyl-CoA ↔ Succinyl-CoA

Thus the propiony fatty acid I residue from an odd-chain fatty acid is the only part of a

c) Oxidation of unsaturted <u>fatty acid</u>s

- <u>Oxidation</u> of unsaturated fatty acids occurs by a modified beta- oxidation pathway.
- 1. Initial reaction
- The CoA ester of these acids are degraded by the enzymes normally responsible for β oxidation until either a Δ^3 -cis- acyl-CoA compound or Δ^4 -Cis-acyl-CoA compound is formed, depending upon the position of the double bonds.
- 2. Reaction of <u>Isomerase</u>
- The former compound is isomerized (Δ^3 *cis-\Delta 2* Acyl **CoA isomerase)** to the corresponding $\Delta 2$ -*trans*-CoA stage of β
 - oxidation for subsequent hydration and oxidation.

(One cycle of Beta Oxidation)

3. Conversion of α - β unsaturated acyl CoA to β hydroxyl acyl CoA Enoyl-CoA hydratase. α - β unsaturated acyl CoA + H₂O $\leftrightarrow \beta$ hydroxyl acyl CoA

4.Dehydrogenation at the β -carbon of β -hydroxyacyl CoA

 $\begin{array}{l} \beta \text{-hydroxyacyl-CoA dehydrogenase} \\ \beta \text{ hydroxyl acyl CoA +NAD}^{+} \leftrightarrow \beta \text{-ketoacyl-CoA+ NADH+H} ^{+} \end{array}$

5. Action of thiolase

Conversion of Δ4 -cis-acy1-CoA to Δ2 -trans enoy1-CoA

Any $\Delta 4$ -*cis-acy1*-CoA remaining, as in the case of linoleic acid, is converted to $\Delta 2$ -*trans* enoy1-CoA by an NADP dependent enzyme, $\Delta 2$ - *trans* - $\Delta 3$ -cis *dienoy*1-CoA reductase.

7. Action of Acyl-CoA dehydrogenase

 Δ -cis (or trans) Δ 2 enoy1-CoA isomerase will attack the *trans* double bond to produce Δ 2 - *trans* enoy1-CoA, This compound is further metobolised via β - oxidation