

Session-5: Internet E-mail: Architecture and infrastructure, functions, agents

and standards

The email system is the network of computers handling electronic mail (email) on the Internet.
This system includes user machines running programs that compose, send, retrieve, and view
messages, and agent machines that are part of the mail handling system. Like other complex
systems, the email system is best explained by looking separately at different perspectives,
applying the principle of separation of concerns. There are two coequal ways of looking at email
systems - the administrative perspective (who does what), and the process perspective (how it
flows). The administrative perspective presented in this article is the simplest. It can be
understood without any technical background. The process perspective presented in "Email
processes and protocols" provides more technical depth, and should be understood by anyone
involved in the design or operation of email systems.

In the process perspective, the mail handling system can be modeled as a sequence of relay
processes, each temporarily storing the message, performing some specialized function, and
passing it on to the next relay using the SMTP protocol.[1] You can tell how many relays handled
a message by looking at the lines labeled "Received:" in the message header. There should be
one for each relay. Relays are not our focus in this article, however. We can ignore them in higher-
level models, just as routers and physical links can be ignored in discussing relays.

In the administrative perspective, the principal entities are actors, their roles, and their
relationships. Who are the actors in a typical email system? What are their roles and
responsibilities in handling the mail? What are their relationships with each other? What are their
motivations? How can we build better security systems? A basic understanding of the
administrative perspective should help answer these questions. This article provides that
understanding.

http://en.citizendium.org/wiki/Email
http://en.citizendium.org/wiki/Email_user_programs
http://en.citizendium.org/wiki/Separation_of_concerns
http://en.citizendium.org/wiki/Email_processes_and_protocols
http://en.citizendium.org/wiki/Email_processes_and_protocols
http://en.citizendium.org/wiki/Relay_(computers)
http://en.citizendium.org/wiki/Simple_Mail_Transfer_Protocol
http://en.citizendium.org/wiki/Email_system#cite_note-1
http://en.citizendium.org/wiki/Email_message_headers

System architecture

Figure 1 Actors (users and agents) and their roles in an ideal email system.

Figure 1 shows an ideal system with the
machines grouped into functional blocks. In this
diagram, we have named the blocks by their role
in processing a message. The actors (users or
agents) are shown in italic text. The MSA role,
for example, is played by a Mail Submission
Agent, which performs all functions related to
message submission. In this ideal system, we have assigned each role to a different actor. In real
systems, however, an actor can have multiple blocks, a block can have multiple machines, and a
machine can host multiple relays running as independent daemon processes.

A small Internet Service Provider (ISP) might perform the roles of MSA/Transmitter using two
relays running on one machine. An agent performing the role of Transmitter might have a dozen
relays, operating in parallel to handle a large mailflow, or widely dispersed to serve users all over
the world. A Mail Delivery Agent might have a process dedicated to managing a large mailstore,
another running a POP/IMAP server, and another providing webmail via HTTP to the Recipient's
browser.

There are many other possibilities. We might add a Forwarder between the Receiver and the
MDA. We might show contractual relationships between the agents or their affiliation with
particular networks.[2] A diagram like Figure 1 could get quite complex. A shorthand notation will
allow us to show the relevant networks, actors, roles, and relationships. Here is a basic system
with four actors (two users and two agents), organized as two networks:

To understand a mail handling system, including its security vulnerabilities, we need to focus on
the roles and responsibilities of each actor and the relationships between them. The double
arrow shows a direct relationship between actors (e.g. a contract between the Author and his
ISP). The single arrow shows only the direction of mail flow. There is no relationship between
agents across the Border to the open Internet. The / shows multiple roles being played by one
actor. Using these diagrams, we can model almost any system, and include a lot of detail on
relationships, but not lose the simplicity of Figure 1. The elements of the model (actors' roles)
are the fundamental building blocks. See Email agents for more example systems.

Actors and Roles:
Actors include users and agents.
Agents may play more than one role.
Typical roles include Transmitter,
Receiver, and Forwarder.

http://en.citizendium.org/wiki/Daemon_(computer_software)
http://en.citizendium.org/wiki/Email_agents
http://en.citizendium.org/wiki/Messaging_application_protocols
http://en.citizendium.org/wiki/Webmail
http://en.citizendium.org/wiki/Email_system#cite_note-2
http://en.citizendium.org/wiki/Email_agents

Here is an extension of the basic system, adding a Forwarder role, played by the same actor as
the Receiver. Both the Receiver/Forwarder and the MDA have a direct relationship with the
Recipient, so they have an indirect relationship (wavy arrow) with each other. These details are
important in discussions of authentication protocols.

If we wonder why email continues to be such an insecure system, we can study this last example.
An MDA is quite frequently a Receiver/MDA that is unaware when an incoming message has been
forwarded. If the MDA runs the most common authentication checks on the incoming message,
it may be rejected as a forgery. The problem is that the Transmitter's domain name no longer
correlates with the IP address seen on the incoming connection from the Forwarder.

This is a good example of how difficult it is for security protocols to keep up with evolving system
designs and changing environments. Forwarding is much more prevalent now than when the
most common email authentication protocols were designed. We can no longer dismiss
Forwarding as just an "edge case". It is important for a user who changes jobs or ISPs, and would
like to continue receiving mail at her old address.

Message handling

Let's follow a message from start to finish. The scenario begins with an Author composing a
message using a mail client on a home computer. There are numerous mail clients available, just
like there are many web browsers to choose from. In fact, many web browsers now include a
mail client, or at least a mechanism to invoke the user's preferred client when he clicks a mailto:
link in a webpage.

When the Author clicks SEND, his mail client connects to an MSA machine at his ISP. A key
responsibility of the MSA is to authenticate the Author. This can be done with a password, by
assigning the client machine a static IP address, or by having the client connect through the MSA's
local network, not through the Internet. If it is necessary to connect through the open Internet,
use of a special TCP port 587 helps to segregate requests for an authenticated connection from
the flood of fraudulent attempts on port 25. After authentication, the message is transferred
using SMTP.

Most large ISPs operate their own transmitter relays, but smaller companies, and organizations
with a lot of bulk mail, often subcontract this specialized role to another agent. Such agents
advertise their services under the name "SMTP Relay", but in this article we will use the more
specific term Transmitter when we mean a role or agent, and transmitter relay when we mean
the relay at the sender's side of the Border.

http://en.citizendium.org/wiki/Email_authentication
http://en.citizendium.org/wiki/Email_authentication
http://en.citizendium.org/wiki/Email_user_programs
http://en.citizendium.org/wiki/Email_port_587

The Transmitter's responsibilities include prevention of outgoing spam, and providing some
means to prove their identity to unrelated Receivers. It isn't enough to say "Hello, this is
trustme.com". Any criminal can do that, and identity fraud has become a major problem on the
Internet. The Transmitter must provide some "out-of-band" data using a service like DNS that is
more secure than email. DNS records can be used to publish a public key, a list of IP addresses,
or some other data that the Receiver can use to run one or more authentication methods.

The Receiver's responsibilities include a number of functions we might call "border defense" –
blocking Denial of Service (DoS) attacks, authenticating the sender, and various spam-filtering
strategies, including whitelisting, blacklisting, statistical analysis of message content, and use of
heuristic rulesets that have proven effective in separating spam from legitimate mail. Border
defense should be done at the Border. Loss of mail due to violations of this principle is common.
A forwarded message may be rejected as a forgery, and then the Forwarder has a tough choice
– drop the message with no notice to the alleged sender, or send the notice and risk being
reported for "bounce spam".

The problems with mis-configured mail systems can be avoided if all actors understand their roles
and responsibilities. When a Recipient sets up forwarding from his old Receiver/Forwarder to his
new MDA, he should make sure that the Forwarder is whitelisted by the MDA. Forwarders should
make sure that Recipients (non-expert users) understand this. MDAs should understand that
forwarding is a common need, and make it easy for Recipients to whitelist their Forwarders.

Else you can find the details at [https://tools.ietf.org/id/draft-crocker-email-arch-10.html]

http://en.citizendium.org/wiki/Domain_Name_System
http://en.citizendium.org/wiki/Email_authentication
http://en.citizendium.org/wiki/Denial_of_service
http://en.citizendium.org/wiki/Anti-spam_techniques
http://en.citizendium.org/wiki/Anti-spam_techniques

