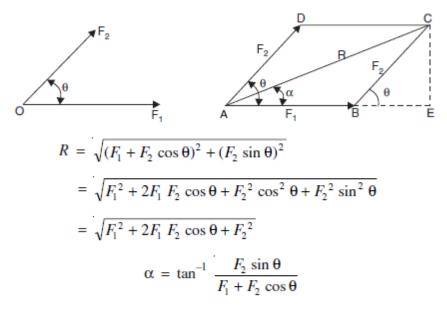
Module I: FORCES AND MOMENT

Session 3

Parallelogram Law of Forces

It states, "If two forces, acting simultaneously on a particle, be represented in magnitude and direction by the two adjacent sides of a parallelogram, their resultant may be represented in magnitude and direction by the diagonal of the parallelogram, which passes through their point of intersection."

Triangle Law of Forces


It states, "If two forces acting simultaneously on a particle, be represented in magnitude and direction by the two sides of a triangle, taken in order, their resultant may be represented in magnitude and direction by the third side of the triangle, taken in opposite order."

Polygon Law of Forces

It is an extension of Triangle Law of Forces for more than two forces, which states, "If a number of forces acting simultaneously on a particle, be represented in magnitude and direction, by the sides of a polygon taken in order, then the resultant of all these forces may be represented, in magnitude and direction, by the closing side of the polygon, taken in opposite order."

Cosine Law Method

Consider the two forces F_1 and F_2 acting on a particle as shown in Figure. Let the angle between the two forces be θ . If parallelogram *ABCD* is drawn with *AB* respresenting F_1 and *AD* representing F_2 to some scale, according to parallelogram law of forces *AC* represents the resultant *R*. Drop perpendicular *CE* to *AB*.

Particular cases:

1. When
$$\theta = 90^{\circ}$$
, $R = \sqrt{F_1^2 + F_2^2}$
2. When $\theta = 0^{\circ}$, $R = \sqrt{F_1^2 + 2F_1F_2^2 + F_2^2} = F_1 + F_2$
3. When $\theta = 180^{\circ}$, $R = \sqrt{F_1^2 - 2F_1F_2 + F_2^2} = F_1 - F_2$

Method of Resolution for the Resultant Force

- 1. Resolve all the forces horizontally and find the algebraic sum of all the horizontal components (*i.e.*, ΣH).
- 2. Resolve all the forces vertically and find the algebraic sum of all the vertical components (*i.e.*, ΣV).
- 3. The resultant *R* of the given forces will be given by the equation:

$$R = \sqrt{(\sum H)^2 + (\sum V)^2}$$

4. The resultant force will be inclined at an angle θ with the horizontal, such that

$$\tan \theta = \frac{\sum V}{\sum H}$$