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MAPE-R: A RESCALED MEASURE OF ACCURACY 
FOR CROSS-SECTIONAL, SUN-NATIONAL FORECASTS 

 
 
 
 

Abstract 
 
Accurately measuring a population and its attributes at past, present, and future points in time 

has been of great interest to demographers. Within discussions of forecast accuracy, 

demographers have often been criticized for their inaccurate prognostications of the future. 

Discussions of methods and data are usually at the center of these criticisms, along with 

suggestions for providing an idea of forecast uncertainty. The measures used to evaluate the 

accuracy of forecasts also have received attention and while accuracy is not the only criteria 

advocated for evaluating demographic forecasts, it is generally acknowledged to be the most 

important. In this paper, we continue the discussion of measures of forecast accuracy by 

concentrating on a rescaled version of a measure that is arguably the one used most often in 

evaluating cross-sectional, subnational forecasts, Mean Absolute Percent Error (MAPE). The 

rescaled version, MAPE-R, has not had the benefit of a major empirical test, which is the central 

focus of this paper. We do this by comparing 10-year population forecasts for U.S. counties to 

2000 census counts. We find that the MAPE-R offers a significantly more meaningful 

representation of average error than MAPE in the presence of substantial outlying errors and 

provide guidelines for its implementation. 

 

Keywords: MAPE, MAPE-R, national county test, forecast accuracy 
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1. Introduction 

Any summary measure of error should meet five desirable criteria; measurement validity, 

reliability, ease of interpretation, clarity of presentation, and support of statistical analysis (NRC 

1980). The most often used summary measure of forecast error, the MAPE, meets most of these 

criteria with one important exception, the lack of measurement validity. Being an arithmetic 

mean it is affected by extreme values and often overstates the error represented by most of the 

observations in a population forecast. For the MAPE, extreme values occur only at the high end 

because it is typically based on a right-skewed distribution of absolute percent errors bounded on 

the left by zero and unbounded on the right. In a comprehensive analysis of county-level 

projections, the MAPE was on average higher by about 30–40% than robust measures of central 

tendency for most methods and projection horizons (Rayer 2007). 

The upward bias of the MAPE is unfortunate because accuracy still remains the most 

important forecast evaluation criterion (Yokum and Armstrong 1995). Because of the 

shortcomings of the arithmetic average in an asymmetrical distribution, statisticians suggest 

alternative measures. The median is one such alternative, but it ignores most of the information 

and has less desirable statistical properties than an arithmetic mean. Other alternatives include 

the geometric mean, the symmetrical MAPE (SMAPE), and robust M-estimators. Tayman and 

Swanson (1999) found that M-estimators more accurately reflected the overall error in a set of 

forecasts, but they lack the intuitive, interpretative qualities of the MAPE and are unfamiliar to 

many users and producers of population forecasts. They also found that SMAPE, which is a 

linear transformation of the MAPE, was not a suitable alternative to the MAPE and suggested the 

use of non-linear transformations to transform the skewed absolute percent error distribution into 

a symmetrical one. 
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In this paper, we focus on a rescaled version of the MAPE. The rescaled version, MAPE-

R, was introduced by Tayman, Swanson, and Barr (1999), given a limited empirical test by 

Swanson, Tayman, and Barr (2000), and conceptually and computationally refined by Coleman 

and Swanson (2007). MAPE-R is based on a power transformation of the error distribution 

underlying the MAPE. It is designed to address the impact of outlying errors on the MAPE, 

which can overstate the error represented by “most” of the observations, while still preserving 

the valuable statistical properties of an average. However, MAPE-R has not had the benefit of a 

major empirical test, which is the central focus of this paper, along with providing criteria for it’s 

implementation. The initial investigations of MAPE-R included empirical illustrations in the 

form of case studies for estimates (Swanson, Tayman, and Barr, 2000) and for forecasts (Tayman 

Swanson, and Barr 1999). However, the case study data were not intended to provide a 

comprehensive empirical portrait of MAPE-R, its features and characteristics, which this paper is 

designed to do. 

2. Measures of Forecast Accuracy  

Swanson and Stephan (2004: 770) define a population forecast as “… an approximation 

of the future size of the population for a given area, often including its composition and 

distribution. A population forecast usually is one of a set of projections selected as the most 

likely representation of the future.” Using this definition of a forecast, population forecast error 

is then the difference between the observed and the forecasted population at a designated point in 

forecast period; that is E = (F – O). This follows a long-standing tradition of using the “ex-post 

facto” perspective in examining forecast error, where the error of a forecast is evaluated relative 

to what was subsequently observed, typically a census-based benchmark (Campbell 2002; 

Mulder 2002). Forecast errors can be evaluated ignoring the direction of error or accounting for 
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its direction. Measures based on the former evaluate forecast precision or accuracy, while 

measures based on the latter evaluate its bias. Our focus here is on measures of forecast 

accuracy. 

Measures accuracy commonly used to evaluate cross-sectional, subnational forecasts can 

be placed into one of two sets, those that are “scale-dependent” and those that are not (Hyndman 

and Koehler 2006). Scale-dependent measures should be used with care when making accuracy 

comparisons across data sets so that different scales which affect the magnitude of these 

measures are not mis-interpreted as differences in error. The most commonly used scale-

dependent summary measures of forecast accuracy are based on the distributions of absolute 

errors (|E|) or squared errors (E2), taken over the number of observations (n). These measures 

include: 

Mean Square Error (MSE) = (∑E2) / n; 

Root Mean Square Error (RMSE) = sqrt(MSE); 

Mean Absolute Error (MAE) = (∑|E|) / n); and 

Median Absolute Error (MEDAE) = median(|E|). 

Both MSE and RMSE are integral components in statistical models (e.g., regression). As 

such, they are natural measures to use in many forecast error evaluations that use regression-

based and statistical methods (Alho and Spencer 2005; Pflaumer 1988; Swanson 2008; Swanson 

and Beck 1994). There is no absolute criterion for a "good" value of any of the scale dependent 

measures. Moreover, as arithmetic means, the presence of outliers will influence MSE, RMSE, 

and MAE. As such, they implicitly give greater weight to larger error values. One advantage that 

RMSE has over MSE is that its scale is the same as the forecast data. Instead of reporting in 

terms of the “average” of squared errors, as is the case for MSE, errors reported by the RMSE 
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are representative of the size of an “average” error. MAE is also measured in the same units as 

the original data, and is usually similar in magnitude to, but slightly smaller than, the RMSE. 

MEDAE is not influenced by outliers, but this strength is also a weakness in that it does not 

maximize the use of available information on the errors, a trait it shares with many “robust” 

measures. 

Measures that are not scale-dependent adjust for the population size of the area using a 

percentage error given by PE = (E / O) * 100. Like the scale dependent measures, a positive 

value of PE is derived by taking its absolute value (|PE|) or its square (PE2). These measures 

include: 

Mean Square Percentage Error (MSPE) = (∑PE2) / n; 

Root Mean Square Percentage Error (RMSPE) = sqrt((∑PE2) / n); 

Mean Absolute Percentage Error (MAPE) = (∑|PE|) / n; and  

Median Absolute Percentage Error (MEDAPE) = median(|PE|).  

Because percentage errors are not scale-independent, they are used to compare forecast 

performance across different data sets. The fact that they assume the existence of a meaningful 

zero is not a problem in demographic forecasting (as it would be if, for example, one were 

forecasting temperatures in the Fahrenheit or Celsius scales). However, they have a major 

disadvantage in that they are infinite or undefined if O = 0 for any observation. Moreover, 

because the underlying error distributions of these measures have only positive values and no 

upper bound, percentage errors are highly prone to right-skewed asymmetry in actual practice 

(Smith and Sincich 1988). This means, for example, that the MAPE is often larger, sometimes 

substantially larger, than the MEDAPE. The MSPE and RMSPE provides the same properties as 

the MSE and RMSE, but are expressed as percents. 
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The symmetrical MAPE (SMAPE) was designed to deal with some of the limitations of 

the MAPE (Makridakis 1993). Like MAPE, SMAPE is an average of the absolute percent errors 

but these errors are computed using a denominator representing the average of the forecast and 

observed values. SMAPE has an upper limit of 200% and offers a well designed range to judge 

the level of accuracy and should be influenced less by extreme values. It also corrects for the 

computation asymmetry of the PE. For example, F = 150 and O = 100 yield a PE = 50%,  

while F = 100 and O =150 yield a PE = 33%. The average of F and O in the denominator of the 

PE yields 40% in either situation. Despite these characteristics, the SMAPE is not a suitable 

alternative too and did not overcome the shortcomings of the MAPE (Tayman and Swanson 

1999). 

Other measures are based on relative errors (Armstrong and Collopy 1992; Hyndman and 

Koehler 2006; Swanson and Tayman 1995). These measures compare the accuracy from two 

forecasts, which can be based on different methods and assumptions. They can also compare a 

forecast from a naïve low cost alternative to one based on a formal forecasting method. Measures 

based on relative errors are useful for judging the utility of a forecast, or its value in improving 

the quality of information upon which decisions are based. A summary of common summary 

error measures discussed below is presented along with their characteristics in Exhibit 1. 

3. Mean Absolute Percent Error (MAPE) 

Of the preceding measures, MAPE is most commonly used to evaluate cross-sectional, 

subnational forecasts (Ahlburg 1992, 1995; Campbell 2002; Hyndman and Koehler 2006; 

Isserman 1977; Miller 2001; Murdock et al. 1984; Rayer 2007; Sink 1997; Smith 1987; Smith 

and Sincich 1990, 1992; Smith, Tayman, and Swanson 2001; Tayman, Schafer, and Carter 1998; 

Wilson 2007). It is a note of MAPE’s ubiquity that it is often found in software packages (e. g., 
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Autobox, ezForecaster, Nostradamus, SAS, and SmartForecast). In addition, MAPE has valuable 

statistical properties in that it makes use of all observations and has the smallest variability from 

sample to sample (Levy and Lemeshow 1991). MAPE is also often useful for purposes of 

reporting, because it is expressed in generic percentage terms that will be understandable to a 

wide range of users. 

MAPE is simple to calculate and easy to understand, which attest to its popularity, but 

does it meet the criteria for a good measure of error? According to the National Research 

Council (1980), any summary measure of error should meet five basic criteria — measurement 

validity, reliability, ease of interpretation, clarity of presentation, and support of statistical 

evaluation. MAPE meets most of these criteria, but its validity is questionable. As noted 

previously, the distribution of absolute percent errors is often asymmetrical and right skewed. As 

such, the MAPE is neither a resistant or robust summary measure because a few outliers can 

dominate it and the MAPE will not be close in value for many distributions (Hoaglin, Mosteller, 

and Tukey 1983: 28; Huber 1964; Tukey 1970). Therefore, the MAPE can understate forecast 

accuracy, sometime dramatically. As such, it has tended to reinforce the perception of inaccurate 

forecasts. 

4. Mean Absolute Percent Error Rescaled (MAPE-R)  

That MAPE is subject to overstating error because of the presence of extreme outliers has 

long been known and attempts to constrain the effect of outliers have taken several paths: (1) 

controlling variables like population size; (2) using a more resistant summary of the distribution 

like a median or M-estimators; or (3) trimming the tail of the distribution. However, as Swanson, 

Tayman, and Barr (2000) argued, outliers do inform the improvement of population estimates 

and forecasts, which is the primary reason they introduced MAPE-R (MAPE-Rescaled). 
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Eliminating outliers removes information and MAPE-R was designed to preserve such 

information by “normalization” rather than elimination. Two major advantages in using a 

transformed distribution are that all observations are kept in the analysis, and all measures of 

central tendency will be approximately the same if that transformed distribution is symmetrical. 

Among other things, in a symmetrical distribution the mean will be as robust and resistant as the 

median.  

One might argue that having an upward bias in a summary measure of central tendency is 

desirable because large errors should be reflected, if present. We along with others (e.g., 

Kitagawa 1980; Morrison 1971) take a different view. Measures of central tendency should not 

be the only criteria to evaluate the error in population projections. Large outlying errors can and 

should be examined separately from the central tendency of error. When data are symmetrically 

distributed the arithmetic mean provides the center of gravity, the center of probability, and 

characterizes the bulk of the distributions. The arithmetic mean only provides a center of gravity 

when data are asymmetrical. 

To change the shape of a distribution efficiently and objectively and to achieve parity for 

the observations, Swanson, Tayman, and Barr (2000) use a standardized technique designed to 

generate a single, nonlinear function to change the shape of the APE distribution. This technique 

modifies the power transformation developed by Box and Cox (1964)1, defined as:  

( ) λλλ λ /)( −= xy  when λ ≠ 0; or 

y(λ) = ln(x) when λ = 0, where 

x is the absolute percent error, y is the transformed observation, and λ is the power 

transformation constant. One determines Lambda (λ) by finding the λ value that 

maximizes the function: 

( ) ( ) ( ) ( )[ ] ( ) ( )∑∑ ×−+−×−= ii xyynnml ln1/1ln2/
2 λλ , where  
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n is the sample size; y is the transformed observation; y is the mean of the 

transformed observations; x is the original observation.  

According to Box and Cox (1964), ml(λ) at a local maximum provides the power 

transformation (λ) for x that optimizes the probability that the transformed distribution will be 

symmetrical. In other words, finding λ does not guarantee symmetry, but it represents the 

transformation power most likely to yield a symmetrical distribution. We can find the maximum 

value of ml(λ)by solving its function for different values of λ between the range of  

–2 and 2 and identifying the largest resulting Box-Cox value (Draper and Smith 1981: 225). 

To address the effect of a skewed distribution on MAPE, Swanson, Tayman, and Barr 

(2000) transformed the Absolute Percent Error (APE) distribution using a Box Cox 

transformation and introduced MAPE-T (MAPE-Transformed) as a summary measure of 

accuracy for this transformed distribution. The transformed distribution considers the entire data 

series, but assigns a proportionate amount of influence to each case through normalization, 

thereby reducing the otherwise disproportionate effect of outliers on a summary measure of 

error.  

In preliminary tests, Swanson, Tayman, and Barr (2000) note that their modified Box-

Cox transformation not only compressed very large values, but also increased values greater than 

one in skewed distributions where λ was relatively small (less than 0.4). This property illustrates 

why this transformation is more effective in achieving a symmetrical distribution than simpler, 

non-linear functions that only increase untransformed errors of less than one. Because many 

estimation errors are greater than one percent, the modified Box-Cox equation not only lowers 

extremely high values toward the body of the data, but also raises relatively low values. These 

characteristics minimize skewness and increase symmetry.2 
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The transformed APE distribution has a potential disadvantage: transformation may move 

the observations into a unit of measurement that is difficult to interpret (Emerson and Stoto 

1983: 124). This is not a trivial issue. As mentioned earlier, the National Research Council states 

that an error measure must have clarity of presentation (National Research Council, 1980). It is 

easier to think of estimation error in terms of percentages than, for example, log-percentages or 

square root-percentages. Interpretation may be impeded if the modified Box-Cox transformation 

is used because it is even less intuitive than simpler transformations, such as the natural log and 

square root. In addition to reflecting a new unit of measurement, the average error of the 

transformed distribution may reflect a new scale that further complicates clear understanding and 

interpretation of error. 

Tayman, Swanson, and Barr (1999) suggest using one of two classes of nonlinear 

functions (quadratic and power) to re-express the scale of the transformed observations into the 

scale of the original observations. Using coefficients from regressions of the APEs on the APE-

Ts, they solve for MAPE-R based on the value of MAPE-T. Initially, regression was considered 

an effective but cumbersome way to re-express MAPE-T into MAPE-R. Testing revealed a more 

serious problem. When λ approaches zero, regression results become inconsistent. With the 

closed form expression in mind (as well as the geometric mean), a simple procedure for re-

expressing MAPE-T back into the original scale of MAPE was tested by Coleman and Swanson 

(2007).3 This re-expression is found by taking the inverse of MAPE-T: 4 

MAPE-R = [(λ)(MAPE-T + 1)]1/λ. 
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A summary of error measures discussed is presented below: 

Measure Name Equation Description 

Absolute Percent Error APE |PE| Absolute error for each 
observation 

Mean Absolute Percent 
Error MAPE ∑|PE|) / n Mean of absolute errors r  

Absolute Percent Error 
Transformed APE-T ( ) λλλ /−APE  when λ ≠ 

0 or ln(APE) when λ = 0 
Transformed absolute error 

for each observation 
Mean Absolute Percent 

Error Transformed MAPE-T ∑|APE-T|) / n Mean of transformed 
absolute errors  

Mean Absolute Percent 
Error Re-Expressed MAPE-R  [(λ)(MAPE-T + 1)]1/λ 

MAPE-T Re-expressed 
into the original 
distribution scale 

 

5. Is MAPE-R Needed?  

Swanson, Tayman, and Barr (2000) provide a set of guidelines for determining if  

MAPE-R is needed. The central issue is the symmetry in the distribution of (APEs). If the 

distribution of APEs in a given forecast evaluation is symmetrical, then MAPE will appropriately 

reflect its center of gravity. However, if it is right-skewed, with outliers in the upper tail, then the 

center of gravity as measured by MAPE is vulnerable to being dominated by these outliers, 

which suggests that the APEs should be transformed into a more symmetrical distribution. In 

determining if a set of APEs should be so transformed, Emerson and Stoto (1983: 125) establish 

the following guideline: If the absolute ratio of the highest APE value to the smallest APE value 

exceeds 20, transformation may be useful; if the ratio is less than 2, then a transformation may 

not be useful; a ratio between 2 and 20 is indeterminate. 

If the Emerson-Stoto guidelines find that a transformation is called for or if the question 

is indeterminate, Swanson, Tayman, and Barr (2000) suggest using a statistical skewness test to 

make a final determination in regard to transformation of the APEs. We use the skewness test 

developed and tested by D’Agostino, Belanger, and D’Agostino Jr. (1990). The null hypothesis 
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tested is that the skewness value = 0, using the 0.10 level of significance. We recommend this 

significance level rather than more stringent ones (e.g., 0.05 and 0.01) because there is a greater 

cost in terms of a downwardly biased measure of accuracy in not transforming a potentially 

skewed distribution. 

When the guidelines indicate a potentially useful transformation of APEs to a 

symmetrical distribution, the transformation is assumed to be successful when the average of the 

new distribution does not overstate or understate the error level and uses all observations. In this 

situation, the observations receive nearly equal weights, closer to 1/n, while the resulting average 

remains intuitively interpretable and clear in its presentation. 

6.  Data 

We conducted our analyses using a data set covering all counties or county equivalents in 

the United States that did not experience significant boundary changes between 1900 and 2000 

(Rayer 2008).5 This data set included 2,481 counties (in 48 states), 79 percent of all counties. For 

each county, information was collected on population size in the launch year (the year of the 

most recent data used to make a forecast), growth rate over the base period (the 20 years 

immediately preceding the launch year), and forecast errors for 10- and 20-year horizons. The 

launch years included all decennial census years from 1920 to 1990. For this analysis, we 

selected a 2000 forecast derived from the 1970 to 1990 base period (10-year horizon).6 Forecast 

errors were calculated as the percent difference between the population forecasted in 2000 and 

the population counted in the 2000 decennial census. We refer to these differences as forecast 

errors, although they may have been caused partly by the errors in the census counts themselves.7 

 Forecasts were derived from five simple extrapolation techniques: linear, exponential, 

share of growth, shift share, and constant share (Rayer 2008). The forecasts analyzed in this 
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study were calculated as an average of the forecasts from these five techniques, after excluding 

the highest and lowest. Simple techniques such as these are frequently used for small-area 

forecasts and have been found to produce forecasts of total population that are at least as accurate 

as those produced using more complex or sophisticated techniques (Long 1995; Murdock et al. 

1984; Smith and Sincich 1992; Smith, Tayman, and Swanson 2001). An important benefit of 

these techniques is that they rely on readily available data and can be applied easily to a very 

large data set. Given the similarity of errors for total population generally found for most 

forecasting techniques applied to the same geographic regions and time periods, we believe the 

results reported here are likely to be valid for other techniques and time periods as well. 

7.  Analysis 

 We begin by analyzing the entire sample of 2,481 counties (see Table 1). The MAPE of 

the original APE distribution was 6.21%. The ratio of the highest to lowest APE (5,220) 

(Max/Min) indicates the need for transformation and the hypothesis of symmetry is rejected 

(P-value 0.000). Following Tayman, Swanson, and Barr (1999), we use the ratio of the MAPE 

(MAPE-R) to MEDAPE (median absolute percent error) as an indication of the of bias of the 

average as a measure of accuracy.8 For all counties, this ratio is 1.40 suggesting that MAPE 

understates the average forecast accuracy by 40%.  

(Table 1 About Here) 

(Figure 1 About Here) 

The Box-Cox transformation yields a λ value of 0.272 resulting in a MAPE-R of 4.42%, 

which is 29% less than the original MAPE.9 The MAPE-R to MEDAPE ratio drops to 0.98, 

indicating that the transformed APE distribution is much less influenced by outlying errors than 
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the original APE distribution. The Box-Cox normalization is successful in that the transformed 

APE distribution has a skewness coefficient close to zero and the null hypothesis of symmetry is 

accepted. The Max/Min ratio has decreased substantially to 196; however, if the 10 values of less 

than 0.5 are excluded that ratio drops to 19.6.   

The effect of the transformation is seen in Figure 1, which compares the original APE 

and transformed APE-T distributions for all counties. The transformation modestly increases the 

APEs up to the median of the distribution where APE and APR-T are roughly equal. Values 

above the median are adjusted downward at an increasing rate, which applies the largest 

adjustments to the most extreme values. As a result, the transformed distribution is no longer 

influenced by outlying errors and the resulting MAPE-R is smaller than the MAPE.10 

The usefulness of the Box-Cox normalization and resulting MAPE-R as an average 

measure of forecast accuracy not influenced by outliers is evident when looking at all counties. 

These results are in line with results reported previously. We now take the analysis a step further 

by examining the county errors separately for the 48 contiguous states in our sample. We first 

assess the original APE distribution for the counties in each state to determine whether or not a 

transformation is warranted. Table 2 provides a summary of the transformation decision and 

detailed results are found in Table 3. 

Eight observations are required to run the skewness test (D’Agostino, Belanger, and 

D’Agostino Jr. 1990), which eliminates six states (13%) from further analysis. In a skewed 

distribution with very small samples, the median is a robust measure of central tendency that 

would not discard much information. 

A transformation was not suggested in seven states (15%). The hypothesis of symmetry 

was accepted with P-values greater than 0.10 in these states, and in five out of seven the 
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Max/Min ratio was less than 20. The Max/Min ratio was greater than 20 in New Jersey and 

South Carolina. In New Jersey, excluding the one value less than 1.5% reduces the ratio to 4.0, 

while for South Carolina; excluding the 3 values less than 0.3 reduces it to 19.9.  

We would expect the MAPE and MAPE-R to be similar in these seven states. This occurs 

for the counties in Connecticut, Maine, New Hampshire, and South Carolina. MAPE-R is within 

10% of the MAPE for each state as shown in the last column of Table 3. Counties in Arizona, 

New Jersey, and Vermont show a greater divergence between the MAPE and MAPE-R, 

suggesting a transformation. An ascending sort of the APEs in these states shows a non-linear 

pattern, causing an upward bias to their MAPEs (data not shown). The MAPE to MEDAPE ratio 

in these states ranged from 1.17 to 1.28. The ratio in the four states where the MAPE and 

MAPE-R were similar ranged from 0.96 to 0.99. The samples sizes in Arizona (11), New Jersey 

(21), and Vermont (14) indicate that the skewness test may not pick up modest departures from 

symmetry in small samples.  

(Tables 2 and 3 About Here) 

Transformations were suggested for 35 of the 48 states (73%) by both the Max/Min ratio 

and skewness test. In these states, the Max/Min ratio was greater than 20 and ranges from 39 to 

over 11,000. The hypothesis of no skewness was rejected in each state at the 0.10 level. Across 

these states the average of the MAPE/MEDAPE ratios is 1.32, suggesting on average a 32% 

understatement of forecast accuracy in the original APE distributions. The Box-Cox 

normalization appears to work well in states whose counties show a skewed APE distribution. 

The skewness values of the transformed APEs are close to zero (ranging from -0.196 to 0.030) 

and the hypothesis of no skewness is accepted in each state. The MAPE-R is less than the MAPE 

for every state, reducing the average error (i.e., increasing the degree of accuracy) by an average 
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of 26%, with a range of 9.2% to 60.6% (last column in Table 3). Moreover, the average of the 

MAPE-R/MEDAPE ratios is now 0.98, indicating the success of the transformation of achieving 

measures of average error not influenced by outliers. 

To measure the impact of the skewness on the upward bias of the MAPE, we regressed 

the percent reduction in error against the skewness in the original APE distribution for the 35 

states where a transformation was suggested A power function using the natural log of both 

variables best describes this relationship with an adjusted R2 of 0.508. The elasticity coefficient 

(0.670) indicates that for every 1% increase in skewness the upward bias of the MAPE increases 

by approximately 0.7%.11 Prior to this research, the sample sizes were insufficient to estimate 

this effect. 

A possible concern with this transformation is that it could make the data to look “better” 

than they really are. In fact, the re-expression of the original APE can both increase and decrease 

the MAPE-T relative to the MAPE. The latter will usually occur with more frequency. In the 35 

states, the MAPE-T is smaller the MAPE in 26 and larger in only nine. To illustrate the affect of 

the transformation for these conditions we examined the error by county in Washington (MAPE 

= 7.38% and MAPE-T = 4.32) and Pennsylvania (MAPE% = 3.36 and MAPE-T = 8.83). 

Figures 2 and 3 About Here 

Figure 2 shows the more typical case illustrated by results for the State of Washington, 

where a λ of 0.361 results in an upward adjustment of a relatively few small original APEs, 

modest downward adjustments to errors close to the main body of the data, and an increasing 

downward adjustment as the APE moves away from the bulk of the observations. In this case, 

the MAPE-T is portraying an average accuracy that is likely biased downward; therefore the 

adjustment to MAPE-R increases the average to 6.32%. In Pennsylvania, a different pattern of 
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adjustment emerges (see Figure 3). The smaller λ of 0.110 causes the bulk of the observations to 

adjust upward. This upward adjustment lessens toward the upper end of the distribution and for 

the relatively few highest values a substantial downward adjustment occurs. The result is the 

average of the transformed APE (MAPE-T) is substantially larger than the MAPE and is likely 

biased upward; therefore the adjustment to MAPE-R decreases that average considerably to 

2.04%.  

8.  Conclusions and Suggestions for Future Research 

MAPE is a suitable measure in many instances (Campbell 2002; Rayer 2007). However, 

it is often based on a right skewed distribution of APEs, which pulls the average error upward 

and understates the forecast accuracy of the bulk of the observations. Releasing evaluations that 

understate accuracy only serves to perpetuate the perception that demographic forecasts are 

inaccurate.  

To determine if average error is overstated, we offered a two-step process for evaluating 

the shape of the original APE distribution. The first step is the Emerson-Stoto test (Emerson and 

Stoto 1983: 125), which is based on the ratio of the maximum to minimum APE. If the first step 

suggests that the distribution of APEs does require transformation, use a formal hypothesis test 

of skewness (e.g., D’Agostino, Belanger, and D’Agostino Jr. 1990) to make the final decision. 

We also showed how these criteria can be used to judge the symmetry of the APE distribution, 

instead of simply accepting MAPE (or MEDAPE) in a given situation. If these tests indicate that 

MAPE is not suitable, we advise using MAPE-R. When a transformation is indicated by the two-

step process, we believe MAPE-R represents an improvement over MAPE in evaluating cross-

sectional, sub-national population forecasts (and cross-sectional, subnational population 



 19

estimate) accuracy. Moreover unlike MEDAPE, MAPE-R preserves information about the 

structure of error in the presence of the outliers that affect MAPE.  

We also demonstrated that the Box-Cox transformation can normalize a skewed 

distribution of APEs and, further, that a simple procedure to re-express the distribution average 

(MAPE-T) provided a summary measure of error (MAPE-R) that is robust, resistant, and 

compliant with the standards set by the National Research Council (1980). This procedure 

worked over a wide range of APE distributions and accommodated situations where original 

APEs were predominately adjusted either up or down and where the skewness ranged from 

moderate to extreme. In sum, using MAPE-T retains all of the information in the forecast error 

distribution and reduces the effect of outliers on the summary measure. Using the technique 

described by Coleman and Swanson (2007),MAPE-R is easy to calculate from MAPE-T, is more 

consistent in terms of monotonicity, and is readily understandable. Most important MAPE-R is 

an average measure of forecast accuracy that is not influenced by the relatively few large errors 

that tend to characterize the distribution of APEs. 

This empirically-based examination of MAPE-R suggests four areas of future research: 

1. Improving the availability of MAPE-R by developing software that can be easily 

accesed in a user friendly computing environment. 

2. Exploring the effect on MAPE-R using an omnibus test of normality that includes 

both skewness and kurtosis (e.g., Jarque and Bera 1987) instead of a test that just 

considers skewness. 

3. Investigating normality functions with influence curves to address the problems of 

non-global monotonicity and known instability of the Box-Cox transformation. One 

possibility is the geometric average (GMAPE), which like MAPE-R is not subject 
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to the shortcomings of the MAPE or to the instability of the Box-Cox 

transformation. 

4. Examining the sensitivity of the λ calibration and the structure of the 

transformations. For example, would the results by state differ if based on a single 

calibration of all counties rather than a state by state calibration as shown in this 

paper? 

In this paper, In this paper, we have provided a large scale empirical test of MAPE-R and 

a set of refined guidelines for its use. Evidence in the test and elsewhere suggests that cross-

sectional, sub-national forecasts are subject to errors that often include substantial outliers. The 

results suggest that MAPE-R should be used instead of MAPE in evaluating these forecasts if 

substantial outliers are indicated per the guidelines we offer. Moreover, unlike MEDAPE, we 

argue that MAPE-R preserves useful information about the structure of error in the presence of 

the substantial outliers. Thus, we argue that the MAPE-R offers a more meaningful 

representation of average error than either MAPE or MEDAPE when evaluations of cross-

sectional, sub-national population forecasts indicate substantial outliers are present. 
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ENDNOTES 
 
 
1. Swanson; Tayman, and Barr (2000) used λ in the numerator. Box and Cox (1964) used 1.0 in 

their original development to assure continuity in λ when λ=0. The difference is immaterial. 

 

2. A potential shortcoming of the Box-Cox transformation is it is not globally monotonic. 

Individual values may have differential influence on the function. Values near the mean of the 

transformed distribution have little effect, while extreme outliers may actually reduce the 

MAPE-T. Because the Box-Cox transformation has no associated influence function, it is 

difficult to determine if and when the Box-Cox will perform this way (Coleman and Swanson, 

2007). 

 

3. Coleman and Swanson (2007) find this closed form expression for MAPE-R to be a member 

of the family of power mean-based accuracy measures. This enables it to be placed in relation to 

other members of this family, which includes HMAPE (Harmonic Mean Absolute Percent 

Error), GMAPE (Geometric Mean Absolute Percent Error), and MAPE. Given that MAPE-R 

was designed to be robust in the face of outliers, it is not surprising to find that it is a valid 

estimator of the median of the distribution generating the absolute percent errors. Simulation 

studies suggest that MAPE-R is a far more efficient estimator of this median than MEDAPE  

 

4. If the optimal value of λ found by the Box-Cox procedure is small, between -0.4 and +0.4, the 

transformed APEs are sufficiently far from the original scale that re-expression is required 

(Tayman, Swanson, and Barr, 1999). 

 



 22

5. These data were kindly provided by Stefan Rayer, Bureau for Business and Economic 

Research, University of Florida. 

 

6. This sample of 2,481 counties had average and median sizes in 1990 of 79,100 and 23,400 

respectively. Between 1970 and 1990, they grew at an average and median rates of 22% and 

14.6%, respectively, with 29% showing population declines during this period. Rayer (2004) has 

shown that this restricted sample is representative of all U.S. counties. 

 

7. We did not adjust these results for changes in census coverage over time. Nationally, the net 

census undercount has declined since 1950, except for a small increase between 1980 and 1990. 

In 2000, both demographic analysis and post-enumeration surveys showed a slight overcount at 

the national level (Robinson, West, and Adlakha 2002; U.S. Census Bureau, 2003). To our 

knowledge, estimates of census coverage errors for counties do not exist. Although changes in 

census coverage undoubtedly had some effect on the result reported here, we believe these 

effects are relatively small and do not affect our findings. 

 

8. This ratio is used as a descriptive tool to help judge the influence of outliers on the MAPE. We 

relate two measures of accuracy; one is affected by outliers (MAPE) and the other is not 

(MEDAPE). In this application, MEDAPE is a convenient reference point that provides an error 

measure free of the influence of extreme values.  

 



 23

9. The transformation of very small original APEs (< 0.20%) resulted in slightly negative values 

in four counties (0.2%). Negative values do not substantially affect the resulting MAPE-R and 

should be set to zero in practice.  

 

10. Coleman (2010) suspects the inverse correlation between lambda and the percent reduction in 

average error may be perfect and nonlinear. He points out that when lambda = 1, one is using the 

data “as is,” while when lambda = 0, one is "squeezing" the data by taking logarithms. 

Consequently, higher values are reduced more than lesser ones, while intermediate values of 

lambda produce intermediate amounts of “squeezing,” which increases as lambda goes to 0. 

11. A regression model including Arizona, New Jersey, and Vermont had an adjusted R2 of 

0.494 and an elasticity coefficient of 0.508, showing a slightly smaller impact of skewness on 

upward bias. 
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Exhibit 1 Summary of Common Error Measures and Their Characteristics 

Measure Name Equation Description 

Absolute Percent Error APE |PE| Absolute error for each 
observation 

Mean Absolute Percent 
Error MAPE ∑|PE|) / n Mean of absolute errors  

Absolute Percent Error 
Transformed APE-T ( ) λλλ /−APE  when λ ≠ 

0 or ln(APE) when λ = 0 
Transformed absolute error 

for each observation 
Mean Absolute Percent 

Error Transformed MAPE-T ∑|APE-T|) / n Mean of transformed 
absolute errors  

Mean Absolute Percent 
Error Re-Expressed MAPE-R  [(λ)(MAPE-T + 1)]1/λ 

MAPE-T Re-expressed 
into the original 
distribution scale 
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Figure 1
Absolute Percent Error, U.S. Counties
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Figure 2
Absolute Percent Error, Washington Counties
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Figure 3
Absolute Percent Error, Pennsylvania Counties
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Table 1   
APE Distribution Statistics, All Counties

Untransformed Transformed

Sample Size 2,481 2,481
Lambda n/a      0.272
Skewness 2.099 -0.017
P-Value1 0.000 0.677
Max/Min2 5,220 196
MAPE 6.21 n/a    
MAPE-R n/a      4.42

1 Ho: Skew = 0 
2 Maximum APE / Minimum APE  
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Table 2  
APE Transformation Decision, States

No. Percent

Insufficient Sample Size 6 13%

No Transformation Suggested 7 15%

Transformation Suggested 35 73%
48 100%  
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Table 3
APE Distribution Statistics, 48 Contiguous States

Untransformed

State
Sample 
Size MAPE  Skew  P-Value1

Max /2 

Min Lambda MAPE-R  Skew  P-Value1

% Reduction3 

in Average 
Error

Insufficient Sample Size 

Delaware 3 8.09 1.150 n/a 17        n/a n/a n/a n/a n/a        
Idaho 4 8.05 1.302 n/a 6         n/a n/a n/a n/a n/a        
Montana 5 11.01 1.453 n/a 7         n/a n/a n/a n/a n/a        
New Mexico 4 7.74 0.894 n/a 4         n/a n/a n/a n/a n/a        
Rhode Island 3 1.99 2.812 n/a 5         n/a n/a n/a n/a n/a        
Wyoming 4 6.77 0.802 n/a 265      n/a n/a n/a n/a n/a        

Transformation Not Suggested

Arizona 11 9.96 0.589 0.358 9         0.090 7.700 -0.043 0.946 22.7%
Connecticut 8 2.80 -0.108 0.884 3         0.644 2.700 -0.219 0.768 3.7%
Maine 12 8.64 0.051 0.934 8         0.826 8.470 -0.149 0.805 2.0%
New Hampshire 10 4.30 -0.065 0.922 9         0.656 4.050 -0.265 0.689 5.8%
New Jersey 21 5.48 0.499 0.300 50        0.458 4.740 -0.031 0.778 13.6%
South Carolina 18 4.86 -0.067 0.849 60        0.671 4.400 -0.457 0.372 9.4%
Vermont 14 4.06 0.904 0.125 17        0.227 3.280 -0.069 0.901 19.2%

Transformation Suggested

Alabama 59 4.69 1.228 0.001 157 0.338 3.613 -0.083 0.781 22.9%
Arkansas 62 5.35 1.322 0.000 158 0.314 3.900 -0.093 0.742 27.1%
California 54 6.07 0.836 0.014 255 0.340 4.784 -0.094 0.757 21.2%
Colorado 48 18.89 0.735 0.036 562 0.538 17.150 -0.053 0.872 9.2%
Florida 26 6.92 1.832 0.001 39 0.147 5.104 -0.021 0.956 26.2%
Georgia 101 9.99 1.423 0.000 3,738 0.320 7.244 -0.068 0.760 27.5%
Illinois 102 4.36 1.753 0.000 156 0.194 3.086 -0.029 0.893 29.2%
Indiana 92 4.68 2.148 0.000 11,076 0.407 3.632 -0.083 0.720 22.4%
Iowa 99 4.83 1.625 0.000 77 0.376 4.097 -0.028 0.897 15.1%
Kansas 105 4.66 1.127 0.000 161 0.372 3.783 -0.077 0.729 18.9%
Kentucky 116 6.32 1.887 0.000 3,418 0.335 4.653 -0.052 0.800 26.4%
Louisiana 56 4.98 2.430 0.000 665 0.384 3.939 0.030 0.932 20.9%
Maryland 19 4.01 1.457 0.009 64 0.202 2.785 -0.060 0.899 30.6%
Massachusetts 10 4.78 2.761 0.000 215 0.052 1.884 -0.028 0.962 60.6%
Michigan 83 5.15 2.944 0.000 116 0.090 3.445 -0.009 0.965 33.1%
Minnesota 78 5.78 1.530 0.000 170 0.240 4.364 -0.006 0.974 24.5%
Mississippi 60 5.85 2.025 0.000 5,816 0.303 3.800 -0.081 0.775 35.0%
Missouri 115 5.69 1.453 0.000 92 0.272 4.396 -0.049 0.814 22.7%
Nebraska 87 5.74 1.221 0.000 177 0.405 4.737 -0.054 0.820 17.4%
Nevada 9 11.52 1.418 0.050 39 0.096 6.631 -0.050 0.941 42.5%
New York 56 3.47 1.616 0.000 474 0.304 2.423 -0.096 0.745 30.1%
North Carolina 86 7.42 0.965 0.001 3,702 0.465 6.331 -0.084 0.729 14.7%
North Dakota 31 4.99 0.966 0.026 2,733 0.309 3.162 -0.196 0.619 36.6%
Ohio 88 3.39 3.537 0.000 265 0.133 2.070 -0.009 0.959 38.9%
Oklahoma 9 4.23 2.245 0.003 105 0.206 2.722 -0.018 0.975 35.7%
Oregon 29 6.46 1.414 0.003 58 0.186 4.481 -0.052 0.895 30.6%
Pennsylvania 67 3.36 2.812 0.000 311 0.110 2.039 -0.015 0.951 39.3%
South Dakota 49 7.50 1.121 0.003 94 0.443 6.168 -0.143 0.654 17.8%
Tennessee 94 7.15 0.582 0.022 277 0.500 6.178 -0.145 0.544 13.6%
Texas 232 7.94 1.133 0.000 258 0.279 5.733 -0.074 0.628 27.8%
Utah 25 12.81 0.804 0.082 224 0.469 11.000 -0.066 0.875 14.1%
Virginia 66 7.79 1.943 0.000 48 0.174 6.044 -0.015 0.952 22.4%
Washington 32 7.38 0.789 0.059 42 0.361 6.318 -0.031 0.932 14.5%
West Virginia 55 4.31 1.772 0.000 214 0.226 2.991 -0.048 0.869 30.5%
Wisconsin 64 4.45 0.713 0.021 95 0.519 3.947 -0.107 0.705 11.3%

1 Ho: Skew = 0 
2 Maximum APE / Minimum APE
3 (1 - (MAPE / MAPE-R)) *100

Transformed
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