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Abstract: Acidic soils hamper maize (Zea mays L.) production, causing yield losses of up to 69%.
Low pH acidic soils can lead to aluminum (Al), manganese (Mn), or iron (Fe) toxicities. Genetic
variability for tolerance to low soil pH exists among maize genotypes, which can be exploited in
developing high-yielding acid-tolerant maize genotypes. In this paper, we review some of the most
recent applications of conventional and molecular breeding approaches for improving maize yield
under acidic soils. The gaps in breeding maize for tolerance to low soil pH are highlighted and an
emphasis is placed on promoting the adoption of the numerous existing acid soil-tolerant genotypes.
While progress has been made in breeding for tolerance to Al toxicity, little has been done on Mn
and Fe toxicities. More research inputs are therefore required in: (1) developing screening methods
for tolerance to manganese and iron toxicities; (2) elucidating the mechanisms of maize tolerance
to Mn and Fe toxicities; and, (3) identifying the quantitative trait loci (QTL) responsible for Mn
and Fe tolerance in maize cultivars. There is also a need to raise farmers’ and other stakeholders’
awareness of the problem of Al, Mn, and Fe soil toxicities to improve the adoption rate of the
available acid-tolerant maize genotypes. Maize breeders should work more closely with farmers at
the early stages of the release process of a new variety to facilitate its adoption level. Researchers are
encouraged to strengthen their collaboration and exchange low soil pH-tolerant maize germplasm.
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1. Introduction

Maize (Zea mays L.) is among the most widely grown crops in the world after rice (Oriza sativa L.)
and wheat (Triticum aestivum L.). It forms the basis for food security in some of the world’s poorest
regions in Africa, Asia, and Latin America and is produced on nearly 100 million hectares in 125
developing countries [1]. One of the major abiotic constraints of maize production is the occurrence
of acidic soils, caused by a low potential of hydrogen (pH). Considerable grain yield reductions of
maize under low soil pH have been reported in numerous studies. Dewi-Hayati et al. [2] reported that
grain yield reduction in acid soils varied from 2.8 to 71%, whereas Tandzi et al. [3] found maize yield
reduction under acid soils to be up to 69%. The variation in yield reduction under low soil pH is based
on the level of acidity in the soil, the agro-climatic conditions of the environment, and the genetic
potential of maize genotypes. Improving grain yield under acidic soil conditions is a major objective of
maize breeding programs in many regions of the world. An estimated 3950 million ha, or 30% of global
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arable land, is covered by acidic soils [4–6]. The largest amount of potentially arable acid soils exists in
the humid tropical zones, and comprises about 60% of the acid soils of the world [5]. The poor fertility
of acidic soils is due to a combination of mineral toxicities (Al, Mn, and Fe) and nutrient deficits caused
by the leaching or decreased availability of phosphorus (P), calcium (Ca), magnesium (Mg), sodium
(Na), and micronutrients such as molybdenum (Mo), zinc (Zn), and boron (B) [7].

The development of high-yielding maize cultivars has been the target of selection and breeding
procedures in tropical and subtropical regions with acid soils. Grain yield is often the product of
interactions between plant genotypes and the environment during the cropping cycle [8]. A high
level of heterosis and good combining ability are prerequisites for developing good, economically
viable maize hybrids [9]. Conventional breeding, based on testcross data, has been widely used
to estimate heterosis between populations or inbred lines, and used to assign inbreds to heterotic
groups [10–15]. Combining ability analyses assess the potential value of inbred lines and identify
the nature of gene action controlling various quantitative characters. This information is essential
for maize breeding focusing on developing hybrids, synthetics, and improved open pollinated
cultivars [16] under low soil pH. The advent of molecular genetics has enabled the use of DNA
markers to tag genomic regions associated with tolerance to low soil pH, and the subsequent utilization
of marker-assisted selection (MAS) to enhance the efficiency of maize breeding programs [17].
Additionally, the identification of key physiological processes associated with yield improvement and
the determination of gene-to-phenotype associations can potentially increase the efficiency of breeding
for acid tolerance, either through traditional or molecular methods [18].

This paper reviews maize improvement for tolerance to acidic soils using conventional and
molecular technologies, with a special focus on the experimentations that have improved the acid
tolerance of some maize genotypes. It also reviews the genetic, physiological, and biochemical
mechanisms by which plants tolerate low soil pH stress. The adoption of existing and improved
acid-tolerant maize genotypes is also taken into account. Challenges faced in breeding for acid
tolerance are identified and suggestions for overcoming them are provided. Areas with limited
information and research attention are also identified. The intensification of research efforts to fill
the identified gaps in information could improve on the efforts already made in the development of
high-yielding and high-quality acid-tolerant maize cultivars.

2. Acid Soils

2.1. Distribution of Acidic Soils

Acidic soils occur mainly in two global belts: the northern belt, with a cold, humid temperate
climate, and the southern tropical belt, with warm and humid conditions [5,6,19]. The global
distribution of acid soils is as follows: 40.9% in the Americas, 26.4% in Asia, 16.7% in Africa, 9.9% in
Europe, and 6.1% in Australia and New Zealand. About 67% of the acid-soil area is under forests, 18%
under savannas and prairie vegetation, 4.5% under arable lands, and less than 1% under perennial
tropical lands [5]. In Cameroon, acid soils cover 75% of arable land [20,21], whereas in Kenya they
cover only 13% of the total land area [22]. In South Africa, 5 million ha of soils are severely acidified
with an estimated 11 million ha being moderately acidic [23]. In KwaZulu Natal, 85% of soils have
pH < 5 and about half of these have an acid saturation of >10% [24]. The distribution of low soil pH
(pH < 5) in the world is presented in Figure 1.
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Figure 1. World distribution of soil pH (modified from [25]).

2.2. Acidification of Soils

Acidic soils are defined as soils with pH < 5.5 in the top layer [4–6]. The amount of hydrogen
cation (H+) activity in the soil solution determines the soil pH and is influenced by edaphic, climatic,
and biological factors. High rainfall affects the rate of soil acidification when rainfall washes away
bases (Ca2+, Mg2+, K+, Na+, and carbonate ion (CO3

−2)) from the soil. Hydrolysis results in a reduction
in soil pH when a metal is dissolved in water, releasing protons. The hydrolytic displacement of base
cations and the provision of additional acids from oxidation reactions are the main natural causes of
soil acidification, which lead to base-deficient, aerated sands under strong leaching conditions such
as high rainfall and drainage [26]. Poor agricultural practices (use of ammonium fertilizers and crop
removal) also contribute to the acidification of the soil [27]. Soil acidification is intensified by the
removal of cations through the harvesting of crops and by acid precipitation from polluted air [28,29].

2.3. Toxification of Acid Soils

Acid soil toxicity is caused by a combination of high solubility of toxic heavy metal elements
(iron, copper, manganese, zinc, and aluminum), a lack of essential nutrients (phosphorus, magnesium,
calcium, potassium, sodium), and low soil pH [30,31]. Low soil pH can therefore generate excesses
of aluminum, iron, and manganese, which hamper crop production [32]. High Al and Fe oxides and
hydroxide in low soil pH are responsible for P fixation, making it unavailable to plants [33–35]. All of
these toxicities (Al, Mn, and Fe) should be considered when breeding for maize tolerance to low soil
pH around the world.

2.3.1. Aluminum Toxicity

Al toxicity limits agricultural productivity by preventing crops to reach their yield
potential [36–39]. Al toxicity (60 to 300 µg per liter of water in soil) can cause 25–80% yield losses
in various crop plants [40]. Under Al toxicity, nitrogen (N), P, and potassium (K) uptake, which are
essential nutrients responsible for the stimulation of root growth [41], become unavailable. Strong
subsoil Al toxicity reduces plant rooting depth, increases susceptibility to drought, and decreases the
use of subsoil nutrients [28]. Al toxicity effects result in root damage, which hamper nutrient uptake
ability, resulting in nutrient deficiency in the plant [42,43]. Under Al toxicity, P deficiency leads to
stunted plant growth, and thin and spindly stems with purpling leaves, which results in the reduction
of grain yield [44,45]. The determination of the content of available Al (exchangeable and in the soil
solution) is essential for an evaluation of the risk for plant production in acid soils. While most of the
attention on acidic soils has been focused on Al toxicity, limited attention has been placed on Fe and
Mn toxicities.
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2.3.2. Iron Toxicity

Iron is the fourth most abundant mineral in the earth’s crust after oxygen (O2), silicon (Si), and Al.
Fe toxicity is a disorder associated with large concentrations of reduced iron (Fe2+) in the soil solution,
which occurs in flooded soils [46]. The hydrolysis of Fe is more acidic than Al hydrolysis. Acidity
resulting from Fe toxicity is normally buffered by Al hydrolysis reactions. However, once most of the
soil Al ions have reacted, Fe hydrolysis takes over, leading to a profound decrease in soil pH [47].

In low soil pH, the anaerobic bacteria provide very high amounts of ferrous ion, which become
toxic to plants. Acid soils that are poorly aerated or compacted can increase iron content to the point
of toxicity. A high concentration of Fe2+ in the rhizosphere has antagonistic effects on the uptake of
essentials nutrients (P, K, and Zn) by the plants, causing the accumulation of harmful organic acids or
hydrogen sulphides, and consequently leading to plant yield reduction [48]. Yield reductions of 12 to
100% have been previously observed in rice growing in iron toxic soils [49–51], depending on the level
of iron toxicity, genetic background of genotypes, and soil fertility status. High iron availability in the
soils can also lead to direct or indirect toxicity in the plants [52]. High toxic levels of accumulated Fe in
plants can damage lipids, proteins, and deoxyribonucleic acid (DNA). Direct effects of iron toxicity
also include damage to cell structures leading to reduced plant growth and injury to foliage [53–56].
In tolerant genotypes, excess iron is known to precipitate on roots, forming an iron plaque that acts as
a barrier against iron while ensuring the utilization of essential nutrients by those plants (a process
known as indirect iron toxicity). In contrast, an imbalance of nutrients has been observed in susceptible
plants growing in soils with toxic levels of iron [48,57,58]. The critical concentration of iron toxicity
symptoms varies from 10 to 500 mg/L depending on the nutrient status in the plants and the presence
of the reduction products in the environment [51].

2.3.3. Manganese Toxicity

Manganese (Mn) is an essential trace element throughout all stages of plant development, which
becomes toxic when taken up in excessive quantities. Mn is deficient in maize plants when its level is
less than 15 ppm; it is low when it is between 15 and 25 ppm; sufficient between 26 and 150 ppm; high
between 151 and 200 ppm; and excessive or toxic when its concentration is higher than 200 ppm [59].

Mn toxicity is associated with Al and Fe hydrolysis, the primary reactions causing soil acidity.
Soil acidification further enhances the solubility of Mn, and thus increases its bioavailability to toxic
levels in natural and agricultural systems [60,61]. The effects of Mn toxicity are more pronounced
in sensitive plants with a decrease in soil pH, which further increases the solubility of Mn [47,61].
The first symptoms of Mn toxicity appear on the oldest leaves of plants as chlorosis, which later
progresses to necrosis [62]. In addition, plants exposed to excess Mn exhibit a very strong inhibition of
chloroplast structure and functions, reduced photosynthetic and transpiration rates, and inhibition of
carbon dioxide (CO2) fixation as a result of stomatal closure [63,64]. To date, there is a very limited
number of published reports on manganese toxicity in plants. Therefore, this area of study requires
more investigations.

2.4. Management of Acidic Soils

A number of management practices are used to correct low soil pH. Liming is the most commonly
recommended management practice [65–67]. Kisinyo [68] found that the application of both lime
and P fertilizer are important for P and N fertilizer recovery efficiencies necessary for healthy maize
growth under acid soils. However, the application of lime and/or fertilizer is not always affordable for
small-scale farmers and is not environmentally friendly [12,69]. Additionally, liming affects the topsoil
and does not remove acidity in the subsoil, where it poses a severe problem to developing roots [70,71].
Mwangi et al. [72] reported that farm yard manure is a better amendment for correcting soil pH because
it has a strong buffering capacity that contains both soil acidity and alkalinity. However, the general
recommendations are very high (10 tons per hectare) and the manure is not always available [73].
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The addition of crop residues to soils can result in an increase in soil pH [74–76]. Hoyt and Turner [74]
found an increase in soil pH of about 0.5 of a pH unit when lucerne meal was added to acid soil, but
observed a decline of pH 20 days after incubation. It has been generally observed that the addition of
residues causes an initial rise in soil pH, which is then followed by a decline in pH [75,77]. The use of
acid-tolerant maize cultivars constitutes an efficient and permanent alternative to increase yields in
acidic soils [78].

3. Mechanisms of Tolerance to Low Soil pH

The mechanisms of tolerance to low soil pH occur at physiological, biochemical, and molecular
levels. However, some of the mechanisms are still poorly understood, and thus require more research.
Knowledge of the mechanisms of tolerance of maize genotypes to Al, Fe, and Mn toxicities could
facilitate the development of acid soil-tolerant genotypes.

The exclusion of Al in the root apoplast as well as intracellular tolerance to Al toxicity [79,80]
have been suggested as important mechanisms for Al tolerance in maize [36–38]. Aluminum exclusion
is related to the ability of Al-tolerant plants to excrete organic acids (predominantly citric acid and
oxalate in maize) and phenolics from the root apex [37,81,82]. The secreted organic anions (OA)
bind with Al to form a complex (Al–OA) which protects the root apex, thus allowing it to continue
growing [38,80,81]. The exudation of other organic compounds may be important for the chelation
of Al in the root apex [38], even though little is known about their mechanisms of action [79]. Other
ligands released in the root apex include phenolic compounds, flavonoids, succinates, phosphates,
uridine diphosphate-glucose, and polysaccharides in the form of mucilages [38,79–81,83,84]. Mucilage
is a gelatinous material made of high molecular weight polysaccharides exuded from the most external
layers of the root apex and is an important mechanism of resistance to metals [79,85].

Physiological, molecular, and biochemical studies have shown that the modification of the cell
wall composition imparts resistance to Al toxicity to some genotypes [79,84–86]. The most important
internal tolerance mechanisms are Al-binding proteins, the chelation of Al using organic acids (such
as citric acid) and other organic ligands in the cytosol, the compartmentalization or sequestration of
Al in the vacuoles, the evolution of Al-tolerant enzymes (such as Nicotinamide adenine dinucleotide
phosphate—specific isocitrate dehydrogenase), elevated enzyme activity [37,86,87], and the Al-induced
synthesis of callose (such as 1, 3-glucan) [78,88]. The phospholipid composition of the plasma
membrane plays an important role in Al toxicity since it creates a negative charge on the surface
of the membrane and increases the sensitivity to Al [79,89].

The mechanisms of tolerance to Mn toxicity are not clearly established [64]. Different plant
species and genotypes respond differently for tolerance to Mn toxicity [64,90]. The tolerance of
maize plants to Mn toxicity has been attributed to tolerance to high tissue concentrations of Mn [63].
Stoyanova et al. [64] evaluated four cultivars of maize under high and toxic concentrations and
found that the most tolerant genotype, Kneja 434, expressed a stronger internal capacity of protection
against the phytotoxicity of Mn and a higher potential of Mn detoxification. More research is needed
to better understand the mechanisms of plant tolerance to Mn and Fe toxicities. Connolly and
Guerinot [53] stated that cells store iron with specialized iron-storage proteins called ferritins, which
play an important role in iron homeostasis, but the significance of this finding remains unclear.

4. Breeding Maize for Tolerance to Low Soil pH

Tolerance to mineral elements can be defined as the ability of a plant to grow better, produce dry
matter, develop fewer deficiency symptoms when grown at low or toxic levels of the mineral element,
and give better yield [91,92]. The breeding of maize for tolerance to low soil pH has largely used
conventional and molecular approaches, as elucidated in the following sections.
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4.1. Conventional Breeding Methods

Breeding programs place emphasis on the grain and forage production of maize plants for
human consumption and animal feed. Selection is therefore directed toward the improvement of
plant growth characteristics under stress conditions. Conventional breeding makes use of heterosis,
heterotic patterns, and heterotic groups, and combinability to develop improved maize hybrids with
tolerance to low soil pH. Screening for tolerance to low pH can be performed in the laboratory using
hematoxylin and nutrient culture assays [93–96], in the greenhouse or glasshouse [97,98], and under
field conditions in sites that are characterized as ‘hot spots’ for soil acidity [3,12,99–101]. However,
the use of nutrient growth solution is a poor predictor for genetic selection under Al toxic soils in
the field. Ouma et al. [94] found that the nutrient culture screening for Al toxicity can predict field
selection under Al toxic soils with an accuracy of 24 to 35%, depending on the saturation level of Al
in a particular soil and the level of available phosphorus. Under low soil pH, Al ions tend to form
highly stable complexes with phosphorus [102]. Under these conditions, maize cultivars with high P
use efficiency have a good acid soil tolerance capacity.

4.1.1. Heterosis, Heterotic Patterns, and Heterotic Groups for Maize Tolerance to Low Soil pH

Heterosis (hybrid vigor) is the phenomenon in which the progeny of crosses between inbred lines or
pure-bred populations perform better than the expected average of the two parents (mid parent heterosis)
for particular traits [103] or better than the best parent (high parent heterosis). There are three probable
causes of heterosis and none involves additive variance. The dominance hypothesis involves the action
and interaction of favorable dominant alleles. The over dominance hypothesis proposes that heterozygous
loci are superior to homozygous loci. The epistasis hypothesis involves the interaction of alleles from
different loci, which is what occurs with regulatory loci that can turn other genes on or off. Ceballos
et al. [104] found in their study in Mexico that in acidic soils, dominance was the most important source
of variation, accounting for about 55% of the total variation. Additive and epistatic variance components
each accounted for 22.5% of the total genotypic variation in the same study. Heterosis has been efficiently
used in the development of high-yielding maize hybrids tolerant to low soil pH.

Inbreds can be classified into specific heterotic groups or patterns depending on their similarity
in combining ability and heterotic response when crossed with genotypes from other genetically
distinct groups [103]. Twenty-eight maize open pollinated cultivars (OPVs) were crossed in all
possible combinations and the 378 varietal hybrids derived from the crosses were evaluated in 10
environments with acid soils in Brazil. From that study, the cultivars were classified into four heterotic
groups based on combining ability data. The consistency of the proposed heterotic groups was
confirmed by comparing intra- and inter-group first generation progeny (F1) values and mid parent
heterosis [105]. More often, significant differences have been recorded among environments and
line x tester interaction across environments, which have highlighted the different responses of
genotypes in various environments [12,13,15,106]. Four distinct heterotic groups were identified under
acid soil and across environments in Cameroon based on the specific combining ability and yield
superiority of F1 hybrids over the best hybrid check from inbred line x tester crosses conducted in
2012–2014 [15]. In India, six parental inbreds were classified into three heterotic groups based on their
specific combining ability for yield under low soil pH. In this case, the superior heterotic pattern was
flint × dent [107].

The standard public sector view of heterosis is based on statistical estimates and often presents a
complex view of heterosis and heterotic groups that is different from most private sector programs.
In most private sector programs, breeders develop heterotic groups by using elite inbred lines as testers.
The general process is to cross two inbreds with different desirable traits but which both combine
well with an elite tester. The F1 of this cross is selfed to produce a source population from which new
inbreds are developed. The new inbreds are selected by the evaluation of hybrids between them and
the tester. Any tester hybrids that outperform the best check hybrid by 10% or more are advanced and
the new inbred is classed into an anti-tester heterotic group [15]. In practice, commercial maize hybrids
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consist of crosses of two unrelated inbreds, each derived from different families or heterotic groups.
The diversity increases on pooling germplasm from different heterotic groups. The application of these
methods could be useful in developing high-yielding maize genotypes with tolerance to low soil pH.
Several research studies [12,13,15,103–107] have been conducted during the past few years under low
soil pH conditions using conventional methods (including combinability and heterotic grouping) with
the goal of developing high-yielding and tolerant maize genotypes. Despite the efforts and progress
made by researchers, the grain yield loss of maize due to low soil pH is still very high. This might be
because low soil pH is associated with others stresses such as water stress and poor soil fertility, thus
making the selection process more complex.

4.1.2. Combining Abilities and Heritability of Maize Genotypes for Tolerance to Low Soil pH

The concept of combining ability is important in hybrid development, where you compare the
performance of lines in hybrid combinations. Combining ability or productivity in crosses is defined
as the ability of a parent or an inbred line to transmit desirable traits to a hybrid. There are two types
of combining ability: general (GCA) and specific (SCA). SCA is the interaction of genes of two parents
involved in a cross with a specific inbred in relation to its contributions in crosses with an array of
other inbreds. It relates to non-additive gene effects and depends on how genes from each inbred
complement the other [108]. Meanwhile, GCA refers to the average performance of a given genotype
or parent in a series of hybrid combinations.

The nature and magnitude of gene action is an important factor in developing an effective breeding
program [16]. In Cameroon, the evaluation of 121 testcross hybrids under acid soil environments showed
that three parental inbred lines (Cam Inb gp1 17, 4001, and 9450) produced hybrids with the best specific
combining ability [15]. Pandey et al. [99] found that parents versus crosses mean squares of grain yield
were highly significant, indicating the importance of heterosis and non-additive gene effects for grain
yield under acidic soil environments. Under low soil pH, Parentoni et al. [109] and Chen et al. [110] also
found the non-additive gene effects to be more important than the additive effects for tolerance to low
P. Moreover, Ouma [96] detected both additive and non-additive gene effects under high and low P in
Kenyan acid soils. Under low soil pH, the yield-related traits are generally controlled by additive and
non-additive gene effects with the predominance of non-additive gene effects. The breeding value and
gene effects of maize genotypes for tolerance to low soil pH are presented in Table 1.

Table 1. Gene effects for maize tolerance to low soil pH.

Type of Maize Genotype Combining Abilities in Low Soil pH References

Hybrids Importance of both additive and non-additive gene effects for yield and
yield components in acid soil environments. [100,101,103,111]

F1 progenies Both additive and non-additive gene actions with the predominance of
non-additive effects were observed under acid soils. [11,12,15,99]

Maize populations Epistasis accounts for the higher proportion of the total variability of
the total sum of squares in acid soil locations. [104]

Maize hybrids (single and
top cross)

Tolerance to Al toxicity in soil acidity was controlled by additive as well
as non-additive gene effects, with the preponderance of additive effects. [111–117]

Single cross hybrids In acid soil with manganese toxicity, the contribution of non-additive
gene effects was greater than the additive effects of genes. [116,117]

Testcross hybrids
At Nkolbisson in Cameroon, where the soil acidity contains Mn toxicity,
the effect of additive genes was higher than the effect of non-additive
genes.

[14]

Grain yield is the most important quantitative trait and it involves multiple genetic effects. In the
development of high-yielding maize hybrids, it is important to know the gene actions and their
relative contribution in the expression of yield-related traits. Under low soil pH, yield is controlled
by additive and non-additive gene actions [100,101,114] with the predominance of non-additive gene
effects [11,12,15,99,103]. It is difficult to select for yield directly so the yield components that are
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usually controlled by additive gene effects are evaluated. Several researchers have reported high
heritability and high genetic variance for different yield components in maize [118,119]. Rafique
et al. [118] reported high heritability (>80%) for all of the traits collected (plant height, ear height, ear
length, ear diameter, grain yield, kernel per row) showing heritable variation among genotypes. Rafiq
et al. [119] found high heritability estimates (>80%) for all of the traits indicating the preponderance of
additive gene action. Bello et al. [120] reported high phenotypic and genotypic coefficient of variations
as well as high heritability for the number of grains per ear, ear weight, and plant and ear heights, and
found that these traits were under the control of additive gene effects. Therefore, effective selection
could be possible for the improvement of these yield components under normal conditions. Khan
et al. [121] reported moderate heritability estimates under normal conditions for plant height (38.5%),
ear height (32.6%), days to 50% tasseling (48.4%), 100-kernels weight (42.3%), ear length (49.5%), ear
diameter (40.0%), and cob diameter (28.5%). Opposingly, Tandzi et al. [3] observed low heritability for
all of the agronomic traits (anthesis-silking interval (9%), plant height (27%), ear height (40%), ear per
plant (14%), ear aspect (28%), plant aspect (17%), and yield (8%)) recorded under low soil pH.

4.1.3. Secondary Traits Associated with Tolerance to Acidic Soils

The identification of secondary traits is very useful in breeding maize for tolerance to low soil pH due
to their correlations with yield. Since yield is mostly controlled by non-additive gene action, secondary
traits could be used as indirect predictors of yield in acid soil environments. In addition, secondary traits
can also be useful for the genotypic characterization of plants in response to low soil pH stress. Baligar
et al. [122] reported that at 41% Al saturation, tolerant maize genotypes produced high shoot and root
weight as well as high nutrient efficiency ratio (NER) for P, Ca Mg, and Fe. The greater grain yield of
newer acid-tolerant Argentinean maize hybrids was mainly related to an increase in harvest index [123].
Increased harvest index was more associated with a greater increase in grain yield components including
kernel number and/or kernel weight than with an increase in shoot biomass. The characteristic most
frequently associated with genetic yield improvement in maize under stress conditions is delayed leaf
senescence or “stay green” [124,125]. Different secondary traits associated with tolerance to low soil pH
at different stages of maize development have been identified over the years (Table 2). Welcker [101]
observed moderately strong to strong correlations of anthesis-silking interval, plant height, and ears per
plant with yield under low soil pH conditions. However, Tandzi et al. [3] observed weak to moderately
weak correlations of anthesis-silking interval and plant height with yield, suggesting the unreliability of
these traits as predictors of performance under low soil pH conditions. Leaf area, photosynthetic rate,
stress tolerance index, and stress susceptibility index showed strong correlations with yield (Table 2);
these traits could be reliable predictors of yield due to their probable stability across environments. Some
secondary traits are specific to certain mineral toxicities in the soil. For instance, chlorophyll content could
be a useful secondary trait under Mn toxicity [64].

Table 2. Secondary traits associated with tolerance to low soil pH.

Secondary Traits * References

Anthesis silking interval (−0.65 in 1999 and −0.66 in 2000), plant height (+0.65 in 1999, +0.71 in 2000), and
ears per plant (+0.50 in 1998, +0.74 in 1999 and +0.74 in 2000) were strongly related to yield. [101]

Leaf area (+0.75) and photosynthetic rate (+0.78) were highly and positively correlated with grain yield. [101]

Seminal root length measured at leaf stage 4 appeared to be the most sensitive trait for tolerance to low pH
under laboratory conditions. [12,101]

Relative Net Root Growth (RNRG) was found to predict field performance under Al toxic soils by between
24% and 35%. [96]

Plant height (0.36), ear height (0.28), and stress tolerance index (0.94) were highly and positively correlated
with yield.
Anthesis-silking interval (−0.13), plant aspect (−0.4), ear aspect (−0.47), and stress susceptibility index
(−0.90) were negatively correlated with yield.

[3]

* Values in brackets refer to correlation coefficients between yield and secondary trait.
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4.2. Application of Molecular Tools in Breeding for Maize Tolerance to Acidic Soils

Molecular approaches have led to significant achievements of higher tolerance and the
identification of genes responsible for acidic soil tolerance, specifically Al tolerance [29]. Molecular
markers have been used in maize breeding to map blocks of genes associated with economically
important traits, often termed as quantitative trait loci (QTL) [126]. Molecular markers are modern
diagnostic tools, which may therefore help breeders to develop cultivars with tolerance to Al, Fe, and
Mn toxicities. Molecular markers could be used in marker-assisted selection (MAS) [127], once genes
linked to each of these toxicities have been identified.

Members of two different families of transporters, ALMT (Al-activated malate transporter) and
MATE (multidrug and toxic compound extrusion), have been identified to facilitate organic acid
anion efflux in Al-tolerant plants [128–131]. Using maize association mapping population and
three independent F2 populations derived from the crosses B73 × CML247, B73 × CML333, and
B73 × NC350, Krill et al. [131] identified six candidate genes, including ALMT2, in response to
Al toxicity. However, only four of the candidate genes, Zea mays AltSB like (ZmASL), Zea mays
aluminum-activated malate transporter2 (ALMT2), S-adenosyl-L-homocysteinase (SAHH), and Malic enzyme
(ME), were identified by both the association and linkage mapping studies. Froese and Carter [132]
found that the positive allele of marker wmc331 linked to ALMT1 was not widely present in the winter
wheat germplasm used in their study but was present only in the most tolerant cultivar. In addition to
Al tolerance, genes in the ALMT family are also known to influence other physiological processes such
as guard cell regulation, fruit quality, and seed development [102].

The MATE gene has been cloned and identified in several crops such as Arabidopsis [55],
barley [133], wheat [134], sorghum [129], rice [135], bean [136], poplar [137], soybean [138], and
maize [130,131] (Table 3). The Al-tolerant allele for the MATE1 locus was found to contain a tandem
gene triplication and to have higher levels of gene expression compared to the sensitive allele with a
single gene copy [131]. A gene-specific marker, Cit7, was developed based on sequence of the barley
HvMATE gene to improve the marker-assisted selection of barley genotypes under Al toxicity [139].
The presence of three copies of MATE1 in Al-tolerant maize lines, Al237, C1006, and IL677a, originating
from regions of highly acidic soils in South America and Africa underscores the role of gene copy
number variation in the adaptation of plants to acidic soils, and further suggests that genome structural
changes may be a rapid evolutionary response to new environments [131].

Mattiello et al. [140] identified 44 candidate genes located within or near intervals of QTL for
Al tolerance, with several functions such as cyclins (RNA binding protein, a protease inhibitor) and
xyloglucan endo transglycosylase protein 8 precursor that may work together and contribute to
maintaining root growth in acid soil with toxic levels of Al. The use of more powerful genomic
technics such as the Hi-C sequencing method could provide new evidence for the existence of spatial
Al-tolerant gene clusters [141].

To date, there are no reports on genes or QTL associated with tolerance to Fe and Mn toxicities.
The identification of QTL linked to secondary traits correlated with yield performance under conditions
of either Fe or Mn toxicity could further enhance the efficiency of maize breeding for tolerance to low
soil pH. QTL associated with secondary traits such as days to silking, anthesis-silking interval, and
stay green characteristic under stressed environments [142,143] could have the potential to be utilized
as indirect molecular predictors of performance of plants exposed to Fe and Mn toxicities. Moreover,
it is relevant to check whether any of the previously identified genes or QTL for Al tolerance have
pleiotropic effects for tolerance to Fe and Mn toxicities. Also, there is need for the application of the
recent advances in proteomic and metabolomics to provide a greater understanding of the mechanisms
involved in the tolerance of plants to low soil pH.
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Table 3. Genes associated with Al tolerance in different crops.

Gene Crop Reference

MATE (multidrug and toxic compound extrusion)

Maize [129–131]
Arabidopsis [55]
Sorghum [129]

Rice [135]
Bean [136]

Poplar [137]
Soybean [138]

Zea mays AltSB like (ZmASL),
Zea mays aluminum-activated malate transporter2 (ALMT2),

S-adenosyl-L-homocysteinase (SAHH),
Malic enzyme (ME)

Maize [139]

HvMATE Barley [135,139]

ALMT (Al-activated Malate Transporter) Wheat, rice, tobacco, barley [128,132,134,144,145]

BnALMT1 and BnALMT2
GmALMT1
ScALMT1

Rape
Soybean

Rye
[146–148]

MsALMT1
HlALMT1

Medicago sativa
Holcus lanatus [149,150]

5. Successes in Breeding for Low Soil pH-Tolerant Maize Genotypes

The International Maize and Wheat Improvement Center (CIMMYT), in collaboration with several
National Agricultural Research Systems (NARS) all over the world, have developed soil acidity-tolerant
maize cultivars to increase maize productivity per unit area. Acid soil-tolerant maize populations
have undergone recurrent selections to improve these populations for grain yield under both acid and
normal soils [151].

Significant progress has been made in the development of tolerant maize genotypes to low soil
pH since 1997. Case studies showing grain yield improvements of some maize genotypes under
acidic soil conditions are summarized in Table 4. Means of yield, percentage yield reduction, and
percentage yield increase of the genotypes (general, hybrids, single cross, best single cross, three-way
cross, best three-way cross, OPV, and the best commercial check) are summarized in Table 4. The
mean yield reduction percentage of genotypes varied from 36 to 51% in Latin America and Asia, and
from 37 to 40% in Cameroon. These variations were influenced by several factors such as the level
of acidity, the agro-climatic conditions, and the tolerance status of the genotypes to low soil pH. The
average grain yield of acid soil-tolerant OPVs such as Sikuani was 3.2 t/ha when evaluated across
13 acid soil environments. On the other hand, top cross hybrids developed in 1995 from crosses of
OPVs and inbred lines had an average grain yield of 3.84 t/ha when evaluated across six acid soil
environments [151]. Reference [103] reported that an addition of 60 kg ha−1 of phosphorus did not
produce a significant grain yield difference for the acid soil-tolerant cultivar ATP-SR-Y but significantly
increased the grain yield of the susceptible cultivar, Tuxpeno Sequia, indicating that ATP-SR-Y is a
P-efficient cultivar. In Cameroon, a maize yield increase of 51% was obtained with some varieties
under low soil pH, while a general yield reduction of 37% was observed in other varieties [3,12]. In
Kenya, some single cross hybrids (KML 036 × MUL 863, KML 036 × S39615-1, MUL 863 × MUL 1007,
MUL 125 × POOLB 26-1, MUL 817 × MUL 125) expressing superior tolerance to Al toxicity were
identified [98]. The most common standard acid-tolerant maize cultivar developed in CIMMYT is
CIMCALI 97 Balopia SA4, referred to as 97BASA4 [95].
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Table 4. Case studies showing grain yield improvements of some maize genotypes evaluated under
selected acidic soil environments from 1998 to 2015.

Genotype

Latin America and Asia (1997–2000) Cameroon (1996–2014)

Mean

Yield
(t/ha)

% Yield
Reduction

% Yield
Increase

Yield
(t/ha)

% of Yield
Reduction

% Yield
Increase

General 2.62 44.6 19.5 3.15 37.3 5.7
Hybrids 2.64 44.9 20.1 3.0 39.5 1

Single cross 2.56 46.7 17.6 3.38 39.5 12.1
Best single cross 2.86 50.8 26.2 6.5 39 51.2
Three-way cross 2.70 41.6 21.8 - - -

Best three-way cross 3.10 41.3 31.9 - - -
OPV 2.11 35.9 - 2.97 36.9 -

Best commercial check - - 3.17 40 6.3

General = overall mean of genotypes, % yield reduction = the proportion of the yield that is lost under low soil pH
compared to the control environment, % yield increase = proportion of yield gain under low soil pH compared to
the check. Sources: [3,12,99].

Even though the expected yield of maize genotypes that are tolerant to low soil pH is still low
compared to normal conditions, several OPVs and hybrids tolerant to this stress have already been
developed and made available to producers. In addition to a high level of expression of the Al tolerance
gene MATE1, some Maize cultivars such as Cateto also contain high copy numbers of the gene [129].
Several inbred lines and hybrids have been developed from crosses involving the cultivar Cateto.
Perentoni et al. [45] classified two maize hybrids (L3 × Cateto and 228-3 × L22) as being P-use efficient
based on their mean yield under low and high P environments. These single cross hybrids could
be highly tolerant to low soil pH since they are capable of efficiently using phosphorus in a stress
environment. Collaborative research should be encouraged in the regions where low soil pH is a major
problem to maize production, as this may lead to improvements in the commercialization of low soil
pH-tolerant cultivars.

6. Adoption of Acid Soil-Tolerant Maize

The adoption of improved maize cultivars remains an important issue in developing countries.
Some acid soil-tolerant maize cultivars have not been adopted by farmers even when available, because
farmers’ selection criteria are generally not considered in the breeding process [51]. About 80% of
farmers recycle improved cultivars, including hybrids, contrary to the recommendations [152] in
most African countries. Although the superiority of hybrids compared to OPVs has been reported,
OPVs will continue to be more important than hybrids under acid soils over the coming years due to
the limited resource-base of smallholder farmers [151]. For instance, several high-yielding, low soil
pH-tolerant top crosses and hybrid maize genotypes have been identified in Cameroon but have not
yet been released [3,12].

Numerous studies have provided insight into the selection criteria of farmers in different parts of
Africa. Tolerance to acidic soils was never mentioned in these studies, despite the prevalence of the
problem. In the bimodal humid forest area of Cameroon, smallholder farmers are willing to adopt
high-yielding maize cultivars tolerant to poor soil fertility if they produce good quality grain and
are soft and sweet tasting [68]. Regression analysis showed that household size, level of education,
contact with extension agents, access to credit, and yield of improved maize cultivars were the factors
that influence the adoption of improved maize cultivars in Nigeria [153]. Gender, age, farm size,
income, and lack of access to extension influenced the low adoption rate of maize technologies in
Western Kenya. Therefore, it has been recommended that policies should consider household structure,
empower smallholder farmers economically, and improve access to extension services to enhance the
adoption of improved maize in the country [154]. The provision of social infrastructure, especially
access roads to market centers, and the extension of agricultural education to farmers would increase
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the spread of improved maize cultivars in Kenya [155]. The use of these approaches might also
facilitate the adoption of acid-tolerant cultivars.

Farmers, in most cases, are not aware when breeders release new high-yielding cultivars with
tolerance to low soil pH. More demonstration plots combined with farmer training and farmer field
days could enhance the adoption rate of improved cultivars. Researchers should apply participatory
selection approaches in maize breeding to share knowledge with farmers and other stakeholders who
regularly interact with farmers. It is not clear whether the majority of researchers actually believe in
involving farmers when evaluating new cultivars. Without famer involvement, practitioners end up
issuing blanket recommendations that are not context-specific. Researchers should organize some
workshops explaining practical aspects to be taken into account to deal with the problem of soil acidity.
This could involve designing simpler ways in which farmers could measure soil pH, as well as the
identification of indicator plants that grow in acidic soils. The adoption of acid-tolerant cultivars
can be expected to improve once farmers have a good appreciation of the problem, as well as simple
ways of detecting soil acidity in their fields. Farmers could also be encouraged to share seeds of some
Al-tolerant cultivars to facilitate their widespread use.

7. Conclusions

Low soil pH is often combined with other stresses such as drought, low N, low P in the soil, and
poor soil fertility. Several maize genotypes with different levels of tolerance to acidic soils have been
developed and commercialized throughout the world, but the yield losses to soil acidity still remain
high. Tailoring the crop to fit acidic or less fertile soils is more effective and more economically and
environmentally friendly than changing the soil to fit the crops. There is a need to use combining ability
and heterosis to efficiently develop high-yielding and more adapted acid-tolerant maize genotypes.
The integrated use of molecular tools such as marker-assisted selection already applied in some areas
is highly encouraged. In countries, mostly in Africa, where the application of molecular markers is
non-existent or very limited due to lack of facilities, financial resources, and skilled personnel, the
establishment of modern state-of-the-art laboratories and the training of human resources are critical.
Researchers are encouraged to strengthen their collaboration through the sharing of data, findings,
and germplasm exchange. The availability of maize germplasm with a broad genetic base for tolerance
to low soil pH would increase the potential for the development of high-yielding cultivars with high
levels of tolerance to low soil pH as well as toxicities of Al, Fe, and Mn. The mechanisms of Mn
and Fe tolerance in maize are still not clearly established. More research should be devoted to maize
tolerance to Mn and Fe toxicities. To raise the level of adoption of improved maize cultivars under
acidic soils, farmers should be involved in the selection process through participatory breeding and
selection approaches.
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Al aluminum
Mn manganese
Fe iron
pH potential of hydrogen
QTL quantitative trait locus
P phosphorus
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Ca calcium
Mg magnesium
Na sodium
Mo molybdenum
Zn zinc
B boron
DNA deoxyribonucleic acid
ha hectare
H+ hydrogen cation
Ca2+ calcium cation
Mg2+ magnesium cation
K+ potassium cation
Na+ sodium cation
(CO3)−2 carbonate ion
O2 oxygen
Si silicon
ppm parts per million
CO2 carbon dioxide
OA organic anion
OPVs open pollinated cultivars
SCA specific combining ability
GCA general combining ability
F1 first generation progeny
ALMT aluminum-activated malate transporter
MATE multidrug and toxic compound extrusion
F2 second generation progeny
CML CIMMYT maize line
CIMMYT International Maize and Wheat Improvement Center
NARS National Agricultural Research Systems
t/ha tons per hectare
ATP-SR-Y acid tolerant population streak resistant yellow
ZmMATE zea multidrug and toxic compound extrusion
HvMATE Hordeum vulgare multidrug and toxic compound extrusion
AltSB aluminum tolerant in sorghum
ALMT2 aluminum-activated malate transporter 2
SAHH S-adenosyl-L-homocysteinase
ME malic enzyme
RNA ribonucleic acid
ALMT1 aluminum-activated malate transporter 1.
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