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Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer 

1. Nusselt number 

Average Nusselt number: 

NuL =
convective heat transfer

conductive heat transfer
=

ℎ𝐿

𝑘
 

where L is the characteristic length, k is the thermal conductivity of the fluid, h is the convective 

heat transfer coefficient of the fluid.  

Selection of the characteristic length should be in the direction of growth (or thickness) of the 

boundary layer; some examples of characteristic length are: the outer diameter of a cylinder in 

(external) cross flow (perpendicular to the cylinder axis), the length of a vertical plate undergoing 

natural convection, or the diameter of a sphere. For complex shapes, the length may be defined 

as the volume of the fluid body divided by the surface area. 

The thermal conductivity of the fluid is typically (but not always) evaluated at the film 

temperature, which for engineering purposes may be calculated as the mean-average of the bulk 

fluid temperature T∞ and wall surface temperature Tw. 

 

Local Nusselt number: 

Nux =
hxx

k
 

The length x is defined to be the distance from the surface boundary to the local point of interest. 

 

2. Prandtl number 

The Prandtl number Pr is a dimensionless number, named after the German physicist Ludwig 

Prandtl, defined as the ratio of momentum diffusivity (kinematic viscosity) to thermal diffusivity.  

That is, the Prandtl number is given as: 

Pr =
viscous diffusion rate

thermal diffusion rate
 =

ν

α
=

Cpμ

k
  

where:  

ν: kinematic viscosity, ν = μ/ρ, (SI units : m²/s) 

α: thermal diffusivity, α =
k

ρCp
, (SI units : m²/s) 

μ: dynamic viscosity, (SI units : Pa ∗ s =  N ∗ s/m²) 

k: thermal conductivity, (SI units : 
W

m∗K
) 

Cp: specific heat, (SI units :
J

kg∗K
) 

ρ: density, (SI units : kg/m³). 

 

3. Reynolds number 

The Reynolds number is defined as the ratio of inertial forces to viscous forces and consequently 

quantifies the relative importance of these two types of forces for given flow conditions. 

The Reynolds number is defined below for each case. 

Re =
inertial forces

viscous forces
 = ρ ∗ v ∗ L/μ =  v ∗ L/ν 
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where: 

v is the mean velocity of the object relative to the fluid (SI units: m/s) 

L is a characteristic linear dimension, (travelled length of the fluid; hydraulic diameter when 

dealing with river systems) (m) 

μ is the dynamic viscosity of the fluid (Pa·s or N·s/m² or kg/(m·s)) 

ν is the kinematic viscosity (ν = μ/ρ) (m²/s) 

ρ is the density of the fluid (kg/m³). 

Note that multiplying the Reynolds number by ρLv/ρLv yields ρv2L2/μvL, which is the ratio of 

the inertial forces to the viscous forces. It could also be considered the ratio of the total 

momentum transfer to the molecular momentum transfer. 

While there is no theorem relating the non-dimensional Reynolds number (Re) to turbulence, 

flows at Reynolds numbers larger than 5000 are typically (but not necessarily) turbulent, while 

those at low Reynolds numbers usually remain laminar. 

 

4. Péclet number 

The Péclet number (Pe) is a dimensionless number relevant in the study of transport phenomena 

in fluid flows. It is defined to be the ratio of the rate of advection of a physical quantity by the 

flow to the rate of diffusion of the same quantity driven by an appropriate gradient. 

The Péclet number is defined as: 

Pe =
advective transport rate

diffusive transport rate
 

For diffusion of matter (mass diffusion), it is defined as: 

PeL  =  L ∗
U

D
 =  ReL/Sc 

For diffusion of heat (thermal diffusion), the Péclet number is defined as: 

PeL  =  L ∗ U/α =  ReL/Pr 

where L is the characteristic length, U the velocity, D the mass diffusion coefficient, and α the 

thermal diffusivity, α =
k

ρ∗Cp
 

where k is the thermal conductivity, ρ the density, and Cp the heat capacity. 

 

Side note 

Fick’s first law: the flux goes from regions of high concentration to regions of low concentration, 

with a magnitude that is proportional to the concentration gradient (spatial derivative), or in 

simplistic terms the concept that a solute will move from a region of high concentration to a 

region of low concentration across a concentration gradient. In one (spatial) dimension, the law 

is: 

J = −D
∂φ

∂x
 

where J is the "diffusion flux" [(amount of substance) per unit area per unit time], for example 

(
mol

m2𝑠
). J measures the amount of substance that will flow through a small area during a small time 

interval. D is the diffusion coefficient or diffusivity in dimensions of [length2 time−1], for example 

(
m2

s
). φ (for ideal mixtures) is the concentration in dimensions of [amount of substance per unit 
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volume], for example (
mol

m3
). x is the position [length], for example m. 

 

5. Stanton number 

The Stanton number, St, is a dimensionless number that measures the ratio of heat transferred 

into a fluid to the thermal capacity of fluid.  

It is used to characterize heat transfer in forced convection flows. 

St =
h

G ∗ Cp
 =

h

ρ ∗ u ∗ Cp
 

where: 

h = convection heat transfer coefficient 

ρ = density of the fluid 

Cp = specific heat of the fluid 

u = speed of the fluid 

It can also be represented in terms of the fluid's Nusselt, Reynolds, and Prandtl numbers: 

St =
Nu

Re ∗ Pr
 

where: 

Nu is the Nusselt number; 

Re is the Reynolds number; 

Pr is the Prandtl number. 

 

6. Mach number 

In fluid mechanics, Mach number (M or Ma) is a dimensionless quantity representing the ratio of 

speed of an object moving through a fluid and the local speed of sound. 

M =  vobject/vsound  

where: 

M is the Mach number, 

vobject is the velocity of the source relative to the medium, and 

vsound is the speed of sound in the medium. 

 

7. Schmidt number 

Schmidt number (Sc) is a dimensionless number defined as the ratio of momentum diffusivity 

(viscosity) and mass diffusivity, and is used to characterize fluid flows in which there are 

simultaneous momentum and mass diffusion convection processes. 

It is defined as: 

Sc =
ν

D
 =

μ

ρ ∗ D
 =  viscous diffusion rate/molecular (mass) diffusion rate 

where: 

ν is the kinematic viscosity or (mu/rho) in units of (m²/s) 

D is the mass diffusivity (m²/s). 

μ is the dynamic viscosity of the fluid (Pa·s or N·s/m² or kg/m·s) 

ρ is the density of the fluid (kg/m³). 

The heat transfer analog of the Schmidt number is the Prandtl number. 
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8. Biot number 

The Biot number (Bi) is a dimensionless quantity used in heat transfer calculations. It gives a 

simple index of the ratio of the heat transfer resistances inside of and at the surface of a body. 

The Biot number is defined as: 

Bi =  h ∗
Lc

kb
 

where: 

h = film coefficient or heat transfer coefficient or convective heat transfer coefficient 

Lc = characteristic length, which is commonly defined as the volume of the body divided by the 

surface area of the body, such that  

Lc  =
Vbody

Asurface
 

kb = Thermal conductivity of the body 

 

9. Rayleigh number 

In fluid mechanics, the Rayleigh number (Ra) for a fluid is a dimensionless number associated 

with buoyancy driven flow (also known as free convection or natural convection). When the 

Rayleigh number is below the critical value for that fluid, heat transfer is primarily in the form of 

conduction; when it exceeds the critical value, heat transfer is primarily in the form of 

convection. 

The Rayleigh number is defined as the product of the Grashof number, which describes the 

relationship between buoyancy and viscosity within a fluid, and the Prandtl number, which 

describes the relationship between momentum diffusivity and thermal diffusivity. Hence the 

Rayleigh number itself may also be viewed as the ratio of buoyancy and viscosity forces times the 

ratio of momentum and thermal diffusivities. 

For free convection near a vertical wall, the Rayleigh number is defined as 

Rax =
𝑔𝛽

𝜈𝛼
∗ (𝑇𝑠 − 𝑇∞)𝑥3 = 𝐺𝑟𝑥𝑃𝑟 

where: 

x = Characteristic length (in this case, the distance from the leading edge) 

Rax = Rayleigh number at position x 

Grx = Grashof number at position x 

Pr = Prandtl number 

g = acceleration due to gravity 

Ts = Surface temperature (temperature of the wall) 

T∞ = Quiescent temperature (fluid temperature far from the surface of the object) 

ν = Kinematic viscosity 

α = Thermal diffusivity 

β = Thermal expansion coefficient (equals to 1/T, for ideal gases, where T is absolute 

temperature) 

In the above, the fluid properties Pr, ν, α and β are evaluated at the film temperature, which is 

defined as 

Tf  =
Ts  + T∞

2
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For most engineering purposes, the Rayleigh number is large, somewhere around 10E6 to 10E8. 

 

For a uniform wall heating flux, the modified Rayleigh number is defined as 

Rax
∗  =  g ∗ β ∗ qo

′′ ∗ x4/(ν ∗ α ∗ k)  

where: 

qo
′′ = the uniform surface heat flux (W/m2) 

k = the thermal conductivity (W/m*K) 

 

10. Grashof number 

The Grashof number (Gr) is a dimensionless number in fluid dynamics and heat transfer which 

approximates the ratio of the buoyancy to viscous force acting on a fluid. It frequently arises in 

the study of situations involving natural convection. 

GrL = gβ(Ts − T∞)L3/ν2 for vertical flat plates 

GrD = gβ(Ts − T∞)D³/ν2 for pipes 

GrD = gβ(Ts − T∞)D3/ν2 for bluff bodies 

where the L and D subscripts indicate the length scale basis for the Grashof Number. 

g = acceleration due to Earth's gravity 

β = volumetric thermal expansion coefficient (equal to approximately 1/T, for ideal fluids, where 

T is absolute temperature) 

Ts = surface temperature 

T∞ = bulk temperature 

L = characteristic length 

D = diameter 

ν = kinematic viscosity 

The transition to turbulent flow occurs in the range 10E8<GrL<10E9 for natural convection from 

vertical flat plates. At higher Grashof numbers, the boundary layer is turbulent; at lower Grashof 

numbers, the boundary layer is laminar. 

The product of the Grashof number and the Prandtl number gives the Rayleigh number, a 

dimensionless number that characterizes convection problems in heat transfer. 

 

11. Skin Friction Coefficient 

The skin friction coefficient, Cf, is defined by  

Cf =
τw

1
2 ∗ 𝜌𝑈∞

2
 

where τw is the local wall shear stress, ρ is the fluid density and U∞ is the free stream 

velocity (usually taken outside of the boundary layer or at the inlet). 

 

12. Drag Coefficient 

In fluid dynamics, the drag coefficient (commonly denoted as: Cd) is a dimensionless quantity 

that is used to quantify the drag or resistance of an object in a fluid environment, such as air or 

water. It is used in the drag equation, where a lower drag coefficient indicates the object will have 

less aerodynamic or hydrodynamic drag. The drag coefficient is always associated with a 

particular surface area. 
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The drag coefficient of any object comprises the effects of the two basic contributors to fluid 

dynamic drag: skin friction and form drag. The drag coefficient of a lifting airfoil or hydrofoil also 

includes the effects of lift-induced drag. The drag coefficient of a complete structure such as an 

aircraft also includes the effects of interference drag. 

The drag coefficient Cd is defined as  

Cd =
Fd

1
2 ∗ 𝜌𝑣2𝐴

 

where: 

Fd is the drag force, which is by definition the force component in the direction of the flow 

velocity, 

ρ is the density of the fluid, 

v is the speed of the object relative to the fluid, 

A is the reference area. 

The reference area depends on what type of drag coefficient is being measured. For automobiles 

and many other objects, the reference area is the projected frontal area of the vehicle. This may 

not necessarily be the cross sectional area of the vehicle, depending on where the cross section is 

taken. For example, for a sphere A = π r2, (note this is not the surface area = 4 π r2). 

For airfoils, the reference area is the planform area. Since this tends to be a rather large area 

compared to the projected frontal area, the resulting drag coefficients tend to be low: much 

lower than for a car with the same drag and frontal area, and at the same speed. 

Airships and some bodies of revolution use the volumetric drag coefficient, in which the 

reference area is the square of the cube root of the airship volume (volume to the two-thirds 

power). Submerged streamlined bodies use the wetted surface area. 

Two objects having the same reference area moving at the same speed through a fluid will 

experience a drag force proportional to their respective drag coefficients. Coefficients for 

unstreamlined objects can be 1 or more, for streamlined objects much less. 

 

13. Eckert Number 

The Eckert number (Ec) is a dimensionless number used in continuum mechanics. It expresses the 

relationship between a flow's kinetic energy and enthalpy, and is used to characterize dissipation. 

It is defined as  

Ec =
u2

Cp∆𝑇
 

where: 

u is the local flow velocity of the continuum, 

Cp is the constant pressure local specific heat of the continuum, 

∆T = Ts − 𝑇∞ is the temperature difference between the surface and the free stream.  

 

14. Fourier Number 

In physics and engineering, the Fourier number (Fo) or Fourier modulus, named after Joseph 

Fourier, is a dimensionless number that characterizes heat conduction. Together with the Biot 

number, it characterizes transient conduction problems. Conceptually, it is the ratio of 

diffusive/conductive transport rate by the quantity storage rate and arises from 
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non-dimensionalization of the heat equation. The transported quantity is usually either heat or 

matter (particles). 

The general Fourier number is defined as: 

Fo =
diffusive transport rate

storage rate
  

The thermal Fourier number is defined by the conduction rate to the rate of thermal energy 

storage. 

Foh =
αt

L2
 

where: 

α is the thermal diffusivity [m2/s] 

t is the characteristic time [s] 

L is the length through which conduction occurs [m] 

For transient mass transfer by diffusion, there is an analogous mass Fourier Number (also 

denoted Fo) defined as: 

Fom =
𝐷𝑡

𝐿2
 

where: 

D is the diffusivity [m2/s] 

t is the characteristic timescale [s] 

L is the length scale of interest [m] 

 

15. Jakob Number 

The Jakob number (Ja) is the ratio of sensible to latent energy absorbed during liquid-vapor phase 

change. It is defined as: 

Ja = Cp(𝑇𝑠 − 𝑇𝑠𝑎𝑡)/∆ℎ𝑓 

Ts − 𝑇𝑠𝑎𝑡 is the temperature difference, 

Cp is the constant pressure local specific heat, 

∆hf is the evaporation enthalpy change. 

 

16. Lewis Number 

Lewis number (Le) is a dimensionless number defined as the ratio of thermal diffusivity to mass 

diffusivity. It is used to characterize fluid flows where there is simultaneous heat and mass 

transfer by convection. 

It is defined as: 

Le =
α

D
 

where α is the thermal diffusivity and D is the mass diffusivity. 

The Lewis number can also be expressed in terms of the Schmidt number and the Prandtl 

number: 

Le = Sc/Pr 


