
Bash Shell

Bash Shell

Agenda

•What is a shell? A shell script?

•Introduction to bash
•Running Commands

•Shell Structures

•Applied Shell Programming

Bash Shell

•Computer understand the language of 0's and 1's called

binary language.

•In early days of computing, instruction are provided using

binary language, which is difficult for all of us, to read and

write. So in Os there is special program called Shell. Shell

accepts your instruction or commands in English (mostly)

and if its a valid command, it is passed to kernel.

Introduction to Shell Programming

Bash Shell

Introduction to Shell Programming

4

Shell is a user program or it's a environment provided for

user interaction.

Shell is an command language interpreter that executes

commands read from the standard input device (keyboard)

or from a file.

Bash Shell

UNIX Command Interpreters

5

To find all available shells in your system type following

command:

$ cat /etc/shells

Linux has a variety of different shells:
Bourne shell (sh), C shell (csh), Korn shell (ksh), TC shell (tcsh),

Bourne Again shell (bash).

Certainly the most popular shell is “bash”. Bash is an sh-

compatible shell

Bash Shell

Programming or Scripting ?

• bash is not only an excellent command line shell, but a scripting language in itself.

Shell scripting allows us to use the shell's abilities and to automate a lot of tasks that

would otherwise require a lot of commands.

• Difference between programming and scripting languages:

• Programming languages are generally a lot more powerful and a lot faster than

scripting languages. Programming languages generally start from source code and are

compiled into an executable. This executable is not easily ported into different

operating systems.

• A scripting language also starts from source code, but is not compiled into an

executable. Rather, an interpreter reads the instructions in the source file and executes

each instruction. Interpreted programs are generally slower than compiled programs.

The main advantage is that you can easily port the source file to any operating system.

bash is a scripting language. Other examples of scripting languages are Perl, Lisp, and

Tcl.

Bash Shell

What is Shell Script

7

Normally shells are interactive. It means shell accept

command from you (via keyboard) and execute them.

But if you use command one by one (sequence of 'n'

number of commands) , the you can store this

sequence of command to text file and tell the shell to

execute this text file instead of entering the commands.

This is know as shell script.

Shell script defined as:

"Shell Script is series of command written in plain text

file. Shell script is just like batch file is MS-DOS but

have more power than the MS-DOS batch file."

Bash Shell

Shell Program Structure

•A shell program contains high-level programming

language features:
–Variables for storing data

–Decision-making control (e.g. if and case statements)

–Looping abilities (e.g. for and while loops)

–Function calls for modularity

8

Bash Shell

Steps to Create Shell Programs

•Specify shell to execute program
–Script must begin with #! to identify shell to be

executed

Examples:
#! /bin/sh (defaults to bash)

#! /bin/bash

#! /bin/csh

#! /usr/bin/tcsh

•Make the shell program executable
–Use the “chmod” command to make the program

/script file executable

9

Bash Shell

How to write shell script

10

(1) Use any editor like vi or pico, gedit to write shell script.

(2) After writing shell script set execute permission for your

script as follows

syntax: chmod permission your-script-name
$ chmod +x your-script-name OR $ chmod 755 your-script-name

This will set read write execute (7) permission for owner, for

group and other permission is read and execute only (5).

(3) Execute your script as syntax:

bash your-script-name

sh your-script-name

./your-script-name
$ bash bar

$ sh bar

$./bar

Bash Shell

Basic Shell Programming

•A script is a file that contains

•shell commands

•data structure: variables

•control structure: sequence, decision, loop

Input

prompting user

command line arguments

Decision:

if-then-else

case

Repetition

do-while, repeat-until

for

select

Functions

11

Bash Shell

What is a Shell Script? What To Do

pico hello.sh
#!/bin/sh
echo ‘Hello, world’

% chmod +x hello.sh
% ./hello.sh

Hello, world

Bash Shell

What is a Shell Script? Executable

pico hello.sh
#!/bin/sh
echo ‘Hello, world’

% chmod +x hello.sh
% ./hello.sh

Hello, world

Bash Shell

What is a Shell Script? Running it

pico hello.sh
#!/bin/sh
echo ‘Hello, world’

% chmod +x hello.sh
% ./hello.sh

Hello, world

Bash Shell

FORMATTING SHELL PROGRAMS

•Comments

•Start comment lines with a pound sign (#)

•Include comments to describe sections of your program

•Help you understand your program when you look at it

later

15

Bash Shell

Single and Double Quote

• When assigning character data containing spaces or special characters, the
data must be enclosed in either single or double quotes.

• Using double quotes to show a string of characters will allow any variables in the
quotes to be resolved

$ var=“test string”
$ newvar=“Value of var is $var”
$ echo $newvar
Value of var is test string

• Using single quotes to show a string of characters will not allow variable
resolution

$ var=’test string’
$ newvar=’Value of var is $var’
$ echo $newvar
Value of var is $var

Bash Shell

Command Substitution

• The backquote “`” is different from the single quote “´”. It is used for command substitution:
`command`

$ LIST=`ls`
$ echo $LIST
hello.sh read.sh

• We can perform the command substitution by means of $(command)

$ LIST=$(ls)
$ echo $LIST
hello.sh read.sh

$ rm $(find / -name “*.tmp”)

$ cat backup.sh
#!/bin/bash
OF=myscript_directory_$(date +%Y%m%d).tar.gz
tar -czf $OF /usr/local

Bash Shell

The export command

• The export command puts a variable into the environment so it will be accessible

to child processes. For instance:

$ x=hello

$ bash # Run a child shell.

$ echo $x # Nothing in x.

$ exit # Return to parent.

$ export x

$ bash

$ echo $x

hello # It's there.

• If the child modifies x, it will not modify the parent’s original value. Verify this by

changing x in the following way:

$ x=ciao

$ exit

$ echo $x

hello

Bash Shell

19

The Environment
•The Unix system is controlled by a number of shell variables that are

separately set by the system some during boot sequence, and some

after logging in. These variables are called system variables or

environment variables.

•The set statement displays the complete list of all these variables. Built-

in variable names are defined in uppercase.

Bash Shell

20

The Environment
•The PATH : is a variable that instructs the shell about the route it should
follow to locate any executable command.

•The HOME : when you log in, UNIX normally places you in a directory
named after your login name.

•The SHELL: determines the type of shell that a user sees on logging in.

• .bash_profile : the script executed during login time. Every time you

make changes to it, you should log out and log in again.

•The .bash_profile must be located in your home directory, and it is

executed after /etc/profile, the universal profile for all users. Universal

environment settings are kept by the administrator in /etc/profile so that

they are available to all users.

Bash Shell

21

The Environment
•ALIASES : it allows you to assign short-hand names for commands you
may be using quite frequently. This is done with the alias statement.
Consider following ex.
–$ alias l=‘ls -l’

•Aliases are listed when the alias statement is used without argument.

•The alias feature also allows you to incorporate positional parameters as
variables in an alias.

For ex.
–$ alias showdir=‘cd $1 ; ls -l’

•When you want to see the contents of the directory /home/arm

Bash Shell

Environmental Variables

• There are two types of variables:

• Local variables

• Environmental variables

• Environmental variables are set by the system and can usually be found by using the env

command. Environmental variables hold special values. For instance:

$ echo $SHELL

/bin/bash

$ echo $PATH

/usr/local/bin:/bin:/usr/bin

• Environmental variables are defined in /etc/profile, /etc/profile.d/ and ~/.bash_profile.

These files are the initialization files and they are read when bash shell is invoked.

• When a login shell exits, bash reads ~/.bash_logout

• The startup is more complex; for example, if bash is used interactively, then /etc/bashrc or

~/.bashrc are read. See the man page for more details.

Bash Shell

Environmental Variables

• HOME: The default argument (home directory) for cd.
• PATH: The search path for commands. It is a colon-separated list of directories that

are searched when you type a command.
• LOGNAME: contains the user name
• HOSTNAME: contains the computer name.
• Usually, we type in the commands in the following way:

$./command

• By setting PATH=$PATH:. our working directory is included in the search path for

commands, and we simply type:

$ command

• If we type in

$ mkdir ~/bin

• and we include the following lines in the ~/.bash_profile:

PATH=$PATH:$HOME/bin
export PATH
• we obtain that the directory /home/userid/bin is included in the search path for commands.

Bash Shell

Read command

• The read command allows you to prompt for input and store it in a variable.

• Example:

#!/bin/bash

echo -n “Enter name of file to delete: ”

read file

echo “Type 'y' to remove it, 'n' to change your mind ... ”

rm -i $file

echo "That was YOUR decision!”

• Line 2 prompts for a string that is read in line 3. Line 4 uses the interactive

remove (rm -i) to ask the user for confirmation.

Bash Shell

Variables

• We can use variables as in any programming languages. Their values are

always stored as strings, but there are mathematical operators in the shell

language that will convert variables to numbers for calculations.

• We have no need to declare a variable, just assigning a value to its reference

will create it.

• Example

#!/bin/bash
STR=“Hello World!”
echo $STR

• Line 2 creates a variable called STR and assigns the string "Hello World!" to it.

Then the value of this variable is retrieved by putting the '$' in at the beginning.

Bash Shell

Warning !

• The shell programming language does not type-cast its variables. This means

that a variable can hold number data or character data.

count=0

count=Sunday

• Switching the TYPE of a variable can lead to confusion for the writer of the script

or someone trying to modify it, so it is recommended to use a variable for only a

single TYPE of data in a script.

Bash Shell

Examples: Command Line Arguments

% set tim bill ann fred

 $1 $2 $3 $4

% echo $*

tim bill ann fred

% echo $#

4

% echo $1

tim

% echo $3 $4

ann fred

27

The ‘set’

command can

be used to

assign values to

positional

parameters

Bash Shell

Arithmetic Evaluation

• The let statement can be used to do mathematical functions:

$ let X=10+2*7

$ echo $X

24

$ let Y=X+2*4

$ echo $Y

32

• An arithmetic expression can be evaluated by $[expression] or $((expression))

$ echo “$((123+20))”

143

$ VALORE=$[123+20]

$ echo “$[123*$VALORE]”

17589

Bash Shell

Arithmetic Evaluation

• Available operators: +, -, /, *, %
• Example

$ cat arithmetic.sh
#!/bin/bash
echo -n “Enter the first number: ”; read x
echo -n “Enter the second number: ”; read y
add=$(($x + $y))
sub=$(($x - $y))
mul=$(($x * $y))
div=$(($x / $y))
mod=$(($x % $y))

print out the answers:
echo “Sum: $add”
echo “Difference: $sub”
echo “Product: $mul”
echo “Quotient: $div”
echo “Remainder: $mod”

Bash Shell

Conditional Statements

• Conditionals let us decide whether to perform an action or not, this decision is

taken by evaluating an expression. The most basic form is:

 if [expression];

 then

 statements

 elif [expression];

 then

 statements

 else

 statements

 fi

• the elif (else if) and else sections are optional

• Put spaces after [and before], and around the operators and operands.

Bash Shell

Expressions

• An expression can be: String comparison, Numeric comparison, File operators

and Logical operators and it is represented by [expression]:

• String Comparisons:

= compare if two strings are equal

!= compare if two strings are not equal

-n evaluate if string length is greater than zero

-z evaluate if string length is equal to zero

• Examples:

[s1 = s2] (true if s1 same as s2, else false)

[s1 != s2] (true if s1 not same as s2, else false)

[s1] (true if s1 is not empty, else false)

[-n s1] (true if s1 has a length greater then 0, else false)

[-z s2] (true if s2 has a length of 0, otherwise false)

Bash Shell

Expressions

• Number Comparisons:

-eq compare if two numbers are equal

-ge compare if one number is greater than or equal to a number

-le compare if one number is less than or equal to a number

-ne compare if two numbers are not equal

-gt compare if one number is greater than another number

-lt compare if one number is less than another number

• Examples:

[n1 -eq n2] (true if n1 same as n2, else false)

[n1 -ge n2] (true if n1greater then or equal to n2, else false)

[n1 -le n2] (true if n1 less then or equal to n2, else false)

[n1 -ne n2] (true if n1 is not same as n2, else false)

[n1 -gt n2] (true if n1 greater then n2, else false)

[n1 -lt n2] (true if n1 less then n2, else false)

Bash Shell
Relational Operators

Meaning Numeric String

Greater than -gt

Greater than or equal -ge

Less than -lt

Less than or equal -le

Equal -eg = or ==

Not equal -ne !=

str1 is less than str2 str1 < str2

str1 is greater str2 str1 > str2

String length is greater than zero -n str

String length is zero -z str

33

Bash Shell

Examples
$ cat user.sh
 #!/bin/bash
 echo -n “Enter your login name: "
 read name
 if [“$name” = “$USER”];
 then
 echo “Hello, $name. How are you today ?”
 else
 echo “You are not $USER, so who are you ?”
 fi

$ cat number.sh
#!/bin/bash
 echo -n “Enter a number 1 < x < 10: "
 read num
 if [“$num” -lt 10]; then
 if [“$num” -gt 1]; then
 echo “$num*$num=$(($num*$num))”
 else
 echo “Wrong insertion !”
 fi
 else
 echo “Wrong insertion !”
 fi

