Fundamentals of Network Security

Asia Pacific Internet Leadership Program Taipei, TW

26 July 2016

APNIC

What's coming up

- Is the Internet secure?
- Myths and Mysteries
- Evolution of security
- Security concepts and management
- Examples
- Developments: IPv6 and IoT
- The Internet security ecosystem

Is the Internet secure?

• The Internet was designed for open connectivity

APNIC

The real questions

- If you ask...
 - "Is the Internet secure?"
 - "Can the Internet be secured?"
 - "Can society ever be safe?"
 - The truthful answer is "No"
- But if you ask...
 - "Can my services/networks/transactions be secured?"
 - "Can the Internet be used securely?"
 - "Can I stay safe?"
 - The answer is probably "Yes" (but with care!)

Myths and Mysteries

- Fiction: The Internet can be secured
- Fiction: Hackers are magicians
- Fiction: Security experts are the magicians
- Fiction: Computer viruses are like actual viruses
- Fact: The Internet can be used securely
- Fact: EVERY breach can be explained, and avoided
- Fact: The first bug was an actual moth

Some history...

- 1946: Grace Hopper, a US Naval Officer, tracks down a moth causing problems in an electromechanical computer; hence "bug".
- 1960s: MIT model train group "hacks" their trains to make them perform better
- 1971: Joe Draper aka "Captain Crunch", uses cereal toy to generate 2600 Hz tone, "phreaking" the AT&T long distance system
- 1983: "War Games" film introduces public to the concept of hacking, and "wardialing"
- 1988: Cornell student Robert Morris Jr. releases self-replicating "worm" on ARPAnet, the first Internet-borne viral programme
- Late 1990s: Online sharing of automated tools. The first "botnets" – armies of virus-infected machines.

Terms: Breaking it down

- Threat
 - Any circumstance or factor with the potential to cause harm
 - a motivated, capable adversary
- Vulnerability
 - A weakness in a system; in procedures, design, or implementation that can be exploited
 - Software bugs, design flaws, operational mistakes
 - The human factor "Social engineering"
- Risk = likelihood x consequence
 - The liklihood (probablility) that a particular vulnerability will occur
 - The severity (impact) of that occurrence

Authentication and Authorisation

- Access control
 - The ability to permit or deny the use of a resource by a user, through three essential services...
- Authentication
 - To reliably identify individual users
 - Users = people, processes, devices
- Authorisation
 - To control which users are allowed to do what with a resource
 - Representing trust, assuming reliable authentication

Security tradeoffs

- Services offered vs. security provided
 - Each service offers its own security risk
 - The more services, the less security
- Ease of use vs. security
 - Every security mechanism causes inconvenience
 - The more "plug n play", the less security
- Risk of loss vs. Cost of security
 - Assets carry value and risk of loss
 - The higher the value, the higher the security cost
- These factors can be balanced in a comprehensive organisational security policy

An unexpected success...

Basic connectivity **Application-specific** Applications/data online content

in the "cloud"

2020s: "loT"

- Evolution of technology, usage and value •
- Evolution of security problems and solutions ullet
- Evolution never stops...

What is going on?

APNIC

What can the attackers do?

- Eavesdropping Listen in on communications
- Masquerading Impersonating someone else
- Forgery Invent or duplicate/replay information
- Trespass Obtain unauthorised access
- Subversion Modify data and messages in transit
- Destruction Vandalise or delete important data
- Disruption Disable or prevent access to services
- Infiltration Hide out inside our machines
- Hijacking "Own" and use machines for nefarious purposes

And why do they do it?

Motivation	Examples
Knowledge driven	RecreationalResearch
Issue-based	HacktivismPatriotism
Antisocial	RevengeVandalism
Competitive	Theft of IPDamage to competitors
Criminal	Theft of assetsExtortion
Strategic	EspionageState-driven or sponsored

And, how to they do it?

- Social engineering attacks
 - Human beings the weakest links
 - "Phishing"
 - Password attacks etc etc
- DNS attacks
 - Corruption and cache poisoning
- Masquerading
 - Address "spoofing"
- Denial of Service
 - DoS attacks
 - DDoS attacks

"Phishing"

- "Fishing" for information such as usernames, passwords, credit card details, other personal information
- Forged emails apparently from legitimate enterprises, direct users to forged websites.

Other social engineering

- Password guessing or cracking
 - Hence need for "non-guessable" passwords
 - Use of different passwords for different services
- Email harvesting and "proof of life"
 - Misuse of collected personal information
 - Spam as a validation tool
 - embedded images Turn them off!
 - unique URLs Don't click on anything!
- Short URLs
 - E.g. http://bit.ly/SGWjdif
 - We're accustomed to clicking without checking where we go next

Masquerading example: ARP

- Address Resolution Protocol (RFC 826, 1982)
 - Used by any TCP/IP device to discover the Layer 2 address of an IPv4 address that it wants to reach

Masquerading example: ARP

- Address Resolution Protocol (RFC 826, 1982)
 - SEND: IPv6 SEcure Neighbour Discovery (RFC 3971, 2005)

····

Securing websites – SSL certificates

Securing DNS – DNSSEC

Misusing IP Addresses...

Misusing IP Addresses...

Masquerading again: IP spoofing

175.98.98.133

Masquerading again: IP spoofing

DoS attack: Amplification

APNIC

Defeating IP spoofing – BCP38

DDoS attack: Distributed DoS

DDoS attack: Distributed DoS

- Botnets for hire
 - Millions of virus-infected computers
 - Ready to be deployed by remote control
- Huge amplification
 - Target traffic volumes in 100s of Gbps
- Motivation
 - Various, but often extortion (requiring payment in BTC)
- Mitigation
 - Various approaches and services available
 - Often bandwidth is the best solution (using cloud-based services)

DDoS - Growth Continues

Survey Peak Attack Size Year Over Year

Source: Arbor Networks. nc.

APN

Largest attack reported was 500 Gbps with other respondents reporting attacks of 450 Gbps, 425 Gbps, and 337 Gbps.

Source: Arbor Networks' WISR 2016 Survey

Security and IPv6

- "IPsec" is mandatory in IPv6 implementation
 but this does not mean it must be used.
- No difference...
 - Traffic monitoring (Sniffing) no change without IPsec
 - Application vulnerabilities no change
 - Rogue devices, viruses etc
- Improvements...
 - IPsec available when needed (eg routing protocols)
 - Scanning address space for devices is much harder
- Threats
 - New expertise required, new implementations, less mature
 - Mistakes will be made

Security and IoT

- We have a long history of "things" on the Internet
 - In that sense, there is nothing fundamentally new with "IoT"
- However...
 - There will be huge increase in the variety of devices
 - Many new vendors will enter the market
 - Many vendors are not "Internet companies"
- Challenges
 - Implementation, Testing, Software upgrades, "EoL" management
- Reference: "Internet of stupid things"
 - Geoff Huston, APNIC

Internet Security Ecosystem

APNIC

The Bigger Picture

Internet Security Ecosystem

Recap...

- Is the Internet secure?
- Myths and Mysteries
- Evolution of security
- Security concepts and management
- Examples
- Developments: IPv6 and IoT
- The Internet security ecosystem

Questions?

Thank you

dg@apnic.net

APNIC

