Design of the Components of A Stationary Power Thresher for Paddy Crop

Presented by Shekhar Kumar Sahu (Assistant Professor)

School of Agricultural and Bio Engineering CUTM

Design of Components of A Stationary Power Thresher for Paddy Crop

- 1. Design of threshing unit
 - a) Threshing cylinder
 - c) Concave
- 2. Design of grain cleaning unit.
 - a) Blower
 - b) Sieve

Distribution of power at different components of the thresher

S. No.	Name of component	Power distribution range (For 5 HP prime mover)		Selected value
		Percentage	HP	
1	Threshing cylinder	57-64%	2.85-3.2	3 HP
2	Aspirator blower	34-40%	1.7-2.0	1.75 HP
3	Sieve shaker	2-5%	0.1- 0.25	0.25 HP

Source: CIAE Data book

Design of Threshing Unit

1. Threshing cylinder

Table 1: Recommended specifications for threshing cylinder

Particulars	Specification	Selected	Reference
Type of threshing cylinder	Spike tooth or Wire-loop	Spike tooth	CIAE Data book,2004
Peripheral speed of threshing cylinder, V _c	16-25 m/s	25 m/s	BIS:1990-1979
Rotational speed of threshing cylinder, N _c	675-1000 rpm	1000 rpm	BIS:1990-1979
Capacity (Weight of grain output per kW per hour)	\geq 90 kg kW ⁻¹ h ⁻¹	150 kg/kW/h	BIS 6320:1985

Calculation:

- 1. Diameter of cylinder $D_c = (V_c \times 60)/\pi N_c$
 - = 25 × 60/ π × 1000
 - $= 0.477 \text{ m} \approx 500 \text{ mm}$

Length of threshing cylinder:

Length of cylinder can be determine by the model given by E. I. Lipkovich

 $L_c = q/\Delta \times \eta \times \rho \times u_1$

Where,

- L_c = Length of threshing cylinder, (m)
- q = Material feed rate; (kg/s),
- Δ = Thickness of the plant mass layer at the entrance in meter (equal to the concave clearance at the entrance)
- η = Coefficient of cylinder length utilization (0.7-0.8),
- ρ = Bulk density of plant mass entering; (20-40 kg/m³ Ref. data book and Kargbo F. R., 2010),

 $u_1 = Velocity of plant mass entering(3-5m/s,Databook)$

Recommended grain throughput rate for paddy thresher

=90 kg/ kWh

Grain to straw ratio = 1:1.3 to 1:3

Therefore, the crop throughput rate or material feed rate for 3.0 HP or 2.4 kW thresher -

Throughput rate = $(Grain + Straw) \times Power available$

 $q = (150+150\times3) \times 2.24$

q = 1332 kg/h of crop = 0.37 kg/s

Length of cylinder will be -

 $L_{c} = q/\Delta \times \eta \times \rho \times u_{1}$

 $L_{c} = 0.37 \ / \ 0.015 \times 0.75 \times 30 \times 5$

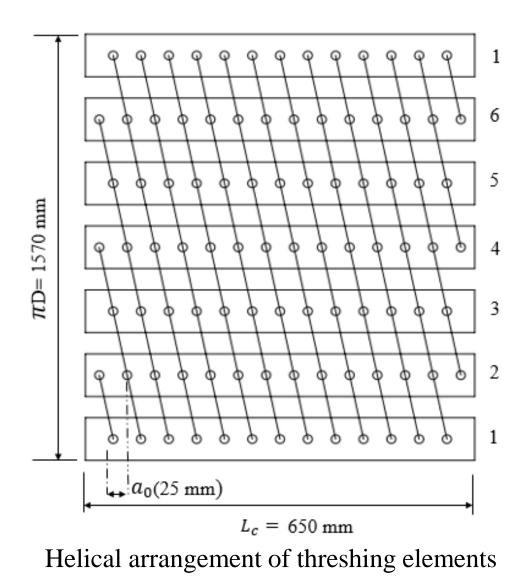
 $L_c = 0.624 \text{ m} \approx 650 \text{ mm}$

Arrangement of Threshing Elements on Cylinder bar

Total number of elements can be calculated by the equation-

 $Z = M_P \times \left(\frac{L_C}{a_o} + 1\right)$

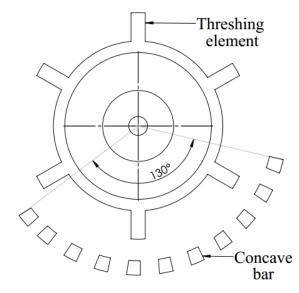
Where, Z = Total number of teeth,


 M_P = Number of helical pitches (number of bars on the periphery of the cylinder ring whose teeth tracing the same path), Recommended value = 3 to 5. Selected value M_P = 3

 L_{C} = Length of threshing cylinder, (mm);

 $a_o =$ Length of longitudinal pitch, (Recommended value 25-37.50mm, IS:3327-1982 . Selected value = 25mm).

Calculation:


$$Z = 3 \times \left(\frac{650}{25} + 1\right)$$
$$Z = 81 \text{ elements}$$

Design of Concave

Table2. Recommended specifications for the concave

Parameters	Specification	Selected	Reference
Concave clearance for paddy crop	15-25 mm	15 mm	CIAE Data book
Clearance between concave bars	9 mm	9 mm	CIAE Data book
Cross section of concave bar	$6 \times 6 \text{ mm}^2$	$6 \times 6 \text{ mm}^2$	CIAE Data book
Wrap angle	30 to 120°	120°	Kanafojski, 1976

Calculation :

Radius of the concave = (radius of the cylinder + Concave clearance)

= (250+15) **= 265 mm**

Wrap angle of concave = length of the concave arc / Radius of the concave

$$120^{\circ} \times \left(\frac{\pi}{180}\right)$$
 = length of the concave arc /265

Length of concave arc = 555 mm

Length of concave arc = (clearance between axial slits + width of the axial slit)× total number of slits $555 = (9+6) \times \text{total number of slits}$

Total number of slits = 37

Fig. 4 Threshing unit

Dimensions of feed inlet

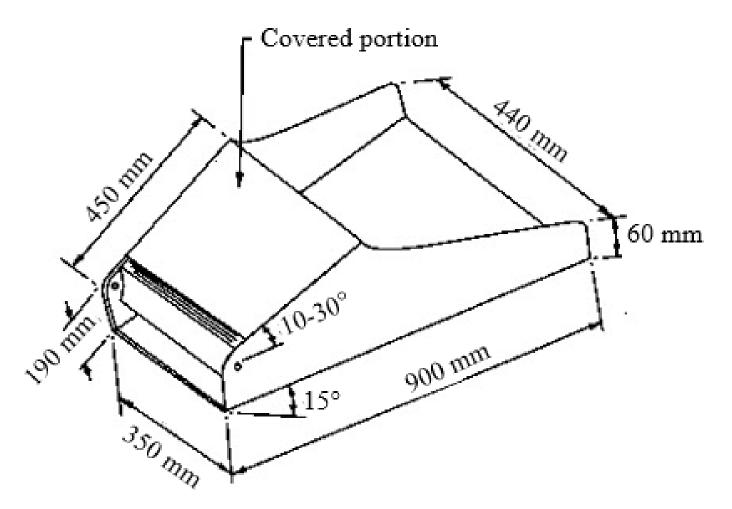
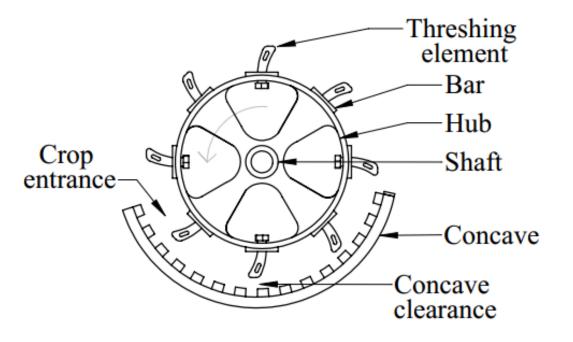
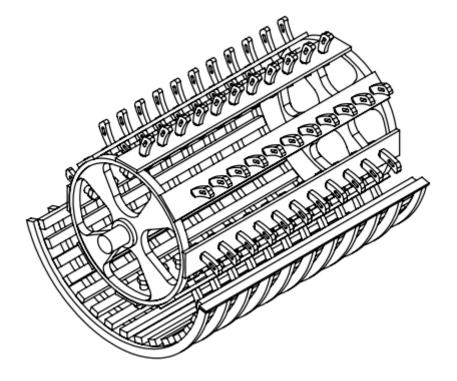
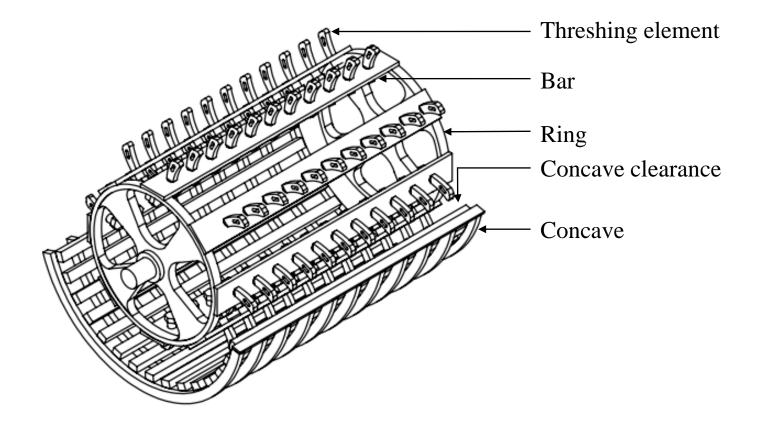





Fig. Dimensions of feed inlet (crop feeding chute) recommended by the Bureau of Indian Standard IS: 9129-1979 Technical Requirements for Safe Feeding Systems for Power Threshers

Design of Grain Cleaning unit

1. MAIN BLOWER- Function of main blower is to remove straw from threshed mixture.

M_{MOG}= M_{Straw}+ M_{Chaff} (Assumption: Total MOG contains 75% straw and 25% chaff)

Thus, $M_{Straw} = 0.75 M_{MOG} = 0.2775 \times 0.75 = 0.208 \text{ kg/s}$, and

 $M_{\text{Chaff}} = 0.25 M_{\text{MOG}} = 0.2775 \times 0.25 = 0.069 \text{ kg/s}$

Mass of air required to remove the straw per unit time (kg/s) =

Mass of straw removed by air stream per unit time (kg/s)

Concentration coefficient of the material entrained by air (0.2 to 0.3, Bosoi. 1990)

= 0.208 / 0.20 = 1.04 kg/s

Volume flow rate of air for removal of straw $(m^3/s) =$ Mass flow rate of air(kg/s) / Air density (kg/m³)

 $= 1.04/1.275 = 0.8156 \text{ m}^3/\text{s}$

Total mass flow rate = Mass flow rate of straw + Mass flow rate of air

= 0.208 + 01.04 = 1.248 kg/s

Design of Grain Cleaning unit

Force required to lift the mass (N) = Mass flow rate (kg/s) \times Velocity of air (m/s)

= Total mass flow rate (kg/s) × Terminal velocity × Excess velocity coefficient (1.1 to 1.7, Bosoi, 1990)

 $= 1.248 \times 5.25 \times 1.5 = 8.354$ N

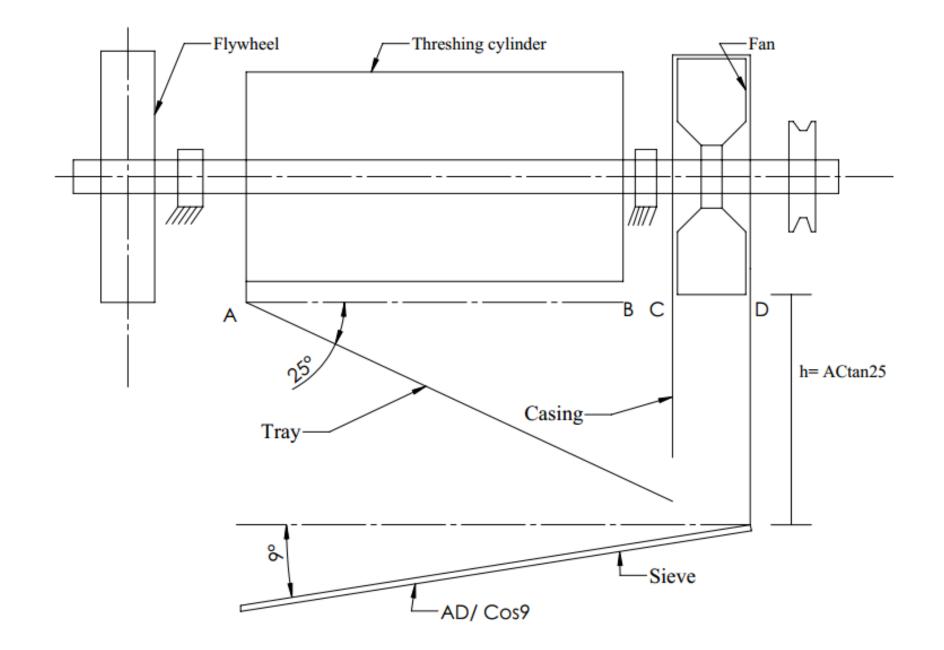
Total Pressure required = Static pressure + Dynamic pressure

 $= (\rho \times g \times h) + (1/2 \times \rho \times V_a^2)$ (h=AC×tan25) = (1.275×9.81×0.325) +1/2×1.275×(7.875)² = 4.06 + 39.53 = **43.60 N/m²**

Cross sectional area of the duct = Force required to lift the material (N) / Total pressure (N/m²) $A = 8.354/43.60 = 0.1916 \text{ m}^2$ Width of the main blower can be calculated by-

Speed of fan(rpm) = $\frac{\text{Volume flow rate} \times 60 \text{ (m}^3/\text{S})}{\text{Cross sectional area of fan (m}^2) \times \text{widht of fan blade (m)}} = N_F = \frac{Q_a \times 60}{\pi (r_0^2 - r_i^2) W_b}$

Assumed that the cylinder and main blower are mounted on the same shaft, therefore rotational speed will same. ($N_c = N_F = 1000$ rpm), Putting the values of speed and volume flow rate in above equation-


 $1000 = (0.8156 \times 60) / (0.1916 \times W_b)$

 $W_b = 0.255 m = 255 mm$

Therefore, the length of duct cross section = Cross sectional area of the duct/ Width of the duct = 0.1916/0.255 = 0.75m = 750 mm

The length of he duct cross section = Diameter of the main blower $D_o = 750 \text{ mm}$ Inner radius of the fan = 0.4× Outer radius of the blower ($r_i = 0.4 \times r_o$)

> Thus, $r_o = \text{diameter of blower}/2 = 0.75 \text{ m} = 375 \text{ mm}$ and $r_i = 0.4 \times 375 = 150 \text{ mm}$

2. SIEVE

Table 3 Recommend values for sieve design

Parameters	Specification	Selected	Reference
Diameter of hole	8 mm	8 mm	CIAE Databook
Sieve inclination	6-9°	9°	CIAE Data book
Permissible load	0.65 kg/m ² s	$0.65 \text{ kg/m}^2\text{s}$	Bosoi, 1990

Length of sieve = AD/Cos 9

Where AD = length of cylinder +bearing width + fan width

= 650 + 50 + 255 = 1140 mm

Length of sieve = $955 / \cos 9 = 970 \text{ mm}$

Width of sieve = Area of sieve / length of sieve

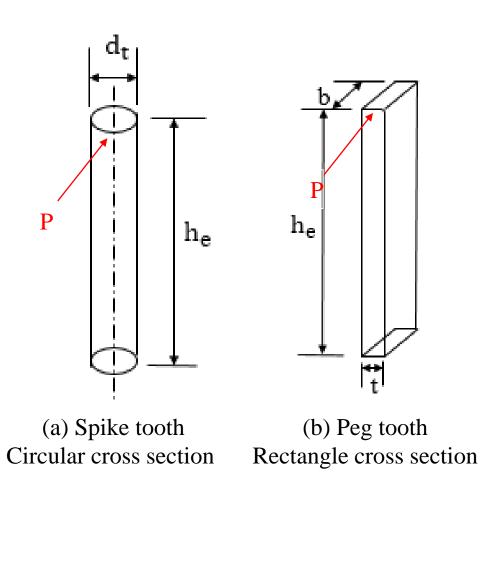
Required area of screen for sieving (m²) = $\frac{\text{Mixture of threshed material delivered (kg/s)}}{\text{Permissible Specific load per unit area (kg/m²s)}}$ = 0.37/0.65 = 0.57 m²

Parameters	Specification	Selected	Reference
Diameter of hole	8 mm	8 mm	CIAE Databook
Sieve inclination	6 - 9°	90	CIAE Data book
Permissible load	0.65 kg/m ² s	0.65 kg/m ² s	Bosoi, 1990

Width of sieve = $0.57/0.97 = 0.587 \text{ m} \approx 600 \text{ mm}$ Area of the single opening = $(\pi/4)d^2 = 50.26 \text{ mm}^2$ Spacing between opening = $0.9\sqrt{d} = 0.9\sqrt{8} = 2.54 \text{ mm}$ Pitch of opening = d/2+ edge to edge distance between consecutive opening +d/2 = 4+2.5+4 = 10.54 mm

Number of opening in transverse direction = width of sieve / pitch = 600/10.54 = 57Number of opening in longitudinal direction = length of sieve / pitch = 970/10.54 = 92

Total area of perforation = area of opening × number of openings = $50.26 \times (57 \times 92) \text{ mm}^2 = 0.2635 \text{ m}^2$ Percentage of opening area = Area of opening/ Total sieve area


 $= [0.2635/(0.970 \times 0.60)] \times 100 = 46\%$

Design of threshing element:

• Assumptions -

- 1. Cross section of the spike tooth and peg tooth type threshing elements are circular and rectangular shape, respectively.
- 2. Threshing element is subjected to bending stress only which is offered by the crop during threshing.
- 3. The point where the bending force acts is 80 mm above the cylinder bar (height of element, h_e)
- 4. Width to thickness ratio of peg tooth type threshing element b:t =3:1., (t = 0.33b), Kanafojski 1976.
- 5. Threshing element is made of mild steel has yield stress $\sigma_b = 175$ MPa.

Design of threshing unit ... Contd.

Size of threshing element is determined by the equation-

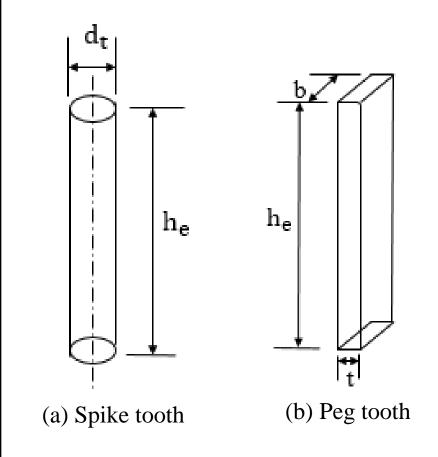
 $\sigma_{\rm b}/y = M/I$

Where, σ_b = Working bending stress of mild steel.

(yield stress/ factor of safety = 175/2.5 = 70 MPa)

(Yield stress = 175 for Mild Steel, CIAE Databook)

y = Distance of neutral axis from the point of application of force; (m),


 $d_t/2$ for circular cross section, and b/2 for rectangular cross section,

M= Bending moment acting on threshing element; (Nm),

 $M = P \times h_e = P \times 0.08 Nm$

 $I = Moment of area of cross section m^4$.

 $(\pi/64) \times d_t^4$ for circular cross section, and $(t \times b^3)/12$ for rectangular cross section

Design of threshing element ... Cont.

Tangential force acting on the element during threshing-

 $\mathbf{P} = \mathbf{P}_1 + \mathbf{P}_2$

Where,

$$\begin{split} P_1 &= \text{Peripheral force appears when the plant mass impacted and brought into motion, calculated by-} \\ P_1 \Delta t &= \Delta m V_P \text{ (Impulse = Momentum obtained by plant mass, Goryanchkin theory)} \\ P_1 &= (\Delta m / \Delta t). \ V_P &= m'. \ V_P \\ \text{Where, } \Delta t &= \text{Striking time; (s),} \qquad \Delta m &= \text{Mass of material struck by tooth; (kg),} \\ V_P &= \text{Speed of material obtained in time } \Delta t \text{ , m/s (equal to drum's peripheral speed)} \end{split}$$

 P_2 =Resistance force encountered by the drum while displacing the plant mass in the clearance.

 $P_2 = f \cdot P$

Where, f is the proportionality coefficient of material's rubbing in working slit. (0.7-0.8 for peg tooth).

Adding forces P_1 and P_2

$$P = (m'V_P + f.P)$$

$$P = (m' \times V_p)/(1 - f)$$

$$P = (0.37 \times 25)/(1 - 0.70) = 46.25 \text{ N. Therefore,}$$

Therefore the bending moment

 $M = P \times h_e = 46.25 \times 0.08 = 3.70 Nm$

$$\sigma_{b}/y = M/I$$

$$(70 \times 10^{6})/(d_{t}/2) = 3.70/[(\pi/64) \times d_{t}^{4}]$$

$$d_{t} = 8.00 \text{ mm}$$

Circular shaped element

 $\sigma_{\rm b}/y = M/I$

$$70 \times 10^{6}/(b/2) = 3.70/(t \times b^{3}/12)$$

 $70 \times 10^{6}/(b/2) = 3.70/[(0.33b \times b^{3})/12]$
 $b = 10.00 \text{ mm} \text{ and } t = 3.50 \text{ mm}$

Rectangular shaped element

he

TT I

Design of threshing element ... Cont.

Design of the shaft

Shaft of cylinder subjected to

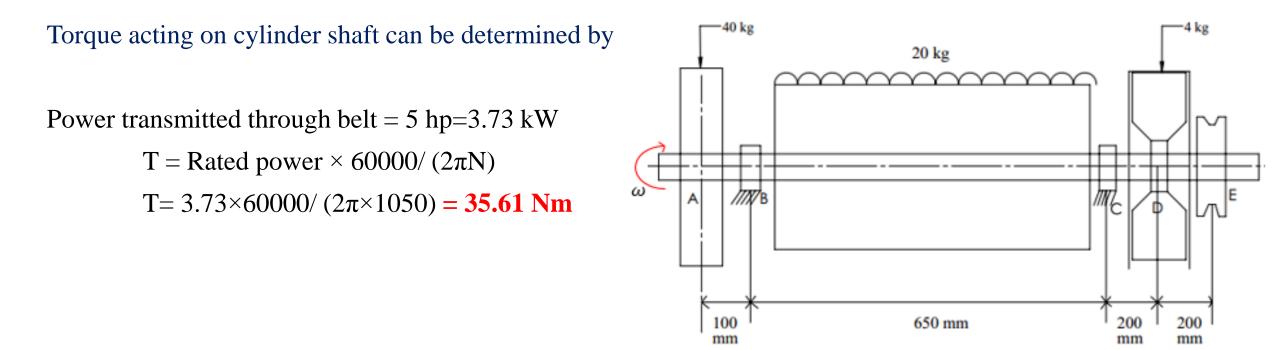
- 1. Torsional stress (τ) : Due to tangential force acting on shaft.
- 2. Bending stress (σ_b): Due to the weight of the threshing cylinder, blower, flywheel and the pulley. The combined stress is called equivalent stress.

Torsional stress-

$$\tau = \frac{T \times r}{J} = \frac{T \times (d/2)}{(\pi/32)d^4} = \frac{16 \times T}{\pi \times d^3}$$

Bending stress-

$$\sigma_{b} = \frac{M \times y}{I} = \frac{M \times (d/2)}{(\pi/64)d^4} = \frac{32 \times M}{\pi \times d^3}$$


Equivalent stress can be calculated by-

$$\sigma_{\rm e} = \frac{1}{2}\sqrt{\sigma_{\rm b}^2 + 4.\tau^2} = \frac{1}{2}\sqrt{\left(\frac{32M}{\pi d^3}\right)^2 + 4\left(\frac{16T}{\pi d^3}\right)^2} = \frac{16}{\pi d^3}\sqrt{M^2 + T^2}$$

When shaft is subjected to fluctuating load then the equivalent stress is given by the equation

$$\sigma_{\rm e} = \frac{16}{\pi d^3} \sqrt{(K_b M)^2 + (K_t T)^2} = \frac{16}{\pi d^3} \sqrt{(1.5M)^2 + (1.25T)^2}$$

 K_b and K_t stands for Combined shock and fatigue factor for bending, and Combined shock and fatigue factor for torsion. Respectively, 1.5-2.0 and 1.0 to 1.5 for suddenly applied minor shock

Bending moment at different point of the shaft

1. Bending moment due to weight of flywheel at point B-

$$M_{AB} = W_A \times L_A = (40 \times 9.81) \times 0.1 = 49.05 \text{ Nm}$$

2. Bending moment at length AC due to weight of cylinder (UDL)

$$M_{BC} = (W_c \times L_c)/8 = (20 \times 9.81) \times 0.65/8 = 16 \text{ Nm}$$

3. Bending moment at point C, due to the weigh of fan+ Load due to belt tension

Bending load on shaft due to belt tension

Tmax = $(Tt - Ts) \times Radius of the pulley mounted of the shaft$

 $35.61 = (Tt - Ts) \times 0.05$

(Tt - Ts) = 712.2 N

Assumed that tension ratio is Tt:Ts = 3:1

Thus, Ts = 356.10 N and Tt = 1068.3 N

The net horizontal force act on the shaft of the cylinder

T = Tt + Ts = 356.1 + 1068.3 = 1424.4 N

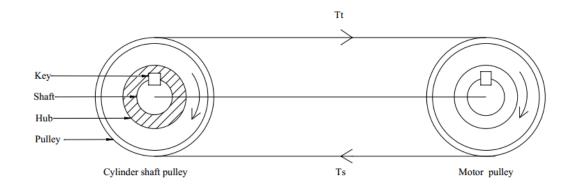


Fig. 3.12 Tension force acting on shaft due to V-belt

Total bending force acting on point C = Load due to fan+ load due to belt tension = $(4 \times 9.81) + 1424.4 = 1463.64$

The bending moment at point C, M_{EC} = Total bending force × Distance (EC) = 1463.64×0.4= **585.45** Nm Therefore,

$$72 \times 10^{6} = \frac{16}{\pi d^{3}} \sqrt{(1.5 \times 1463.64)^{2} + (1.25 \times 35.62)^{2}}$$

d = **53.77 mm**

Results

- 1. Threshing unit
 - 1. Diameter of threshing cylinder = 500 mm
 - 2. Length of threshing cylinder = 650 mm
 - 3. Diameter of circular threshing element = 8 mm,
 - 4. Width and thickness rectangular = 10 and 3 mm respectively.
 - 5. Concave radius = 265 mm
 - 6. Wrap angle of concave = 130°
 - 7. Diameter of the shaft = 53.77 mm
- 2. Grain cleaning unit
 - 1. Inner radius of the fan = 150 mm
 - 2. Outer radius of the fan = 375 mm
 - 3. Width of the fan = 255 mm
 - 4. Length of sieve = 970 mm
 - 5. Width of sieve = 600 mm

REFERENCES:

- 1. H. Bernacki, J. Haman, Cz. Kanafojski. 1972. "Agricultural Machines, Theory and Construction, Vol. 1" U. S. Department of Agriculture and the National Science Foundation, Washington D.C. by the Scientific publications Foreign Cooperation Center of the Central Institute of Scientific, Technical and Economic Information, Warsaw, Poland.
- IS: 9019- 1979, Code Of Practice for Installation, Operation and Preventive Maintenance of Power Threshers. Bureau of Indian Standards. New Delhi.
- 3. IS: 9129-1979 Technical Requirements for Safe Feeding Systems for Power Threshers. Bureau of Indian Standard . New Delhi.
- 4. Bosoi E.S., verniaeve C.V., Smirnov I.I. 1990, "Theory, Construction and Calculations of Agricultural Machines" volume 2. Oxonian press Pvt. Ltd. New Delhi.
- 5. Varshney A.C., Tiwari P.S., N. Suresh., Mehta C.R. Data Book For Agricultural Machinery Design. Central Institute of Agricultural Engineering.
- 6. Shigley, J.E., Mischke, C.R. and Budynas, R.G., 2004. Mechanical engineering design. McGraw-Hill,.
- 7. Varshney, A.C., 2004. Data book for agricultural machinery design.

