
database server, so external commands do not arrive directly on the internal network. Your

internal database will also be vulnerable if the perimeter network is compromised. If any

machine is compromised, it may be vulnerable to sniffing attacks; if the web server is

compromised, an intruder will have the full power of the remote database access

mechanism available.

 Put the web server on the perimeter network and the database server on the internal

network, and use a custom-written protocol to connect them. You are relying on your

ability to construct a secure protocol that enables the transactions you need. It just changes

the protocols used to connect the web server to the database. Creating a secure client/server

application is not easy, so implementing the communications yourself may simply

introduce different security problem.

 There are two web servers. Put one web server on the perimeter network and the other web

server and the database server on the internal network. No database traffic will have to pass

through the firewall; on the other hand, custom-written protocol is necessary to connect the

web server on the perimeter network and the other web server on the internal network. You

are relying on your ability to construct a secure protocol. The custom-written protocol

connect two web servers and internal server talks to the database server. Creating a secure

client/server application is not easy.

 There is a web server and an application server. Put the web server on the perimeter

network and the application server and database on the internal network. No database

traffic will have to pass through the firewall; on the other hand, the web server will forward

the request to the application server through firewall. The way of communication between

the web server and the application server is vender specific.

All of these approaches can be successful; putting the database on the perimeter network provides

the most protection for your internal network, and putting the web server on the internal network

provides the least.

General concepts, functionalities

Server security is a key aspect of server management for web hosting providers and server

administrators. Here, we look at ten techniques for hardening servers and monitoring them for

security vulnerabilities.

1. Use Public Key Authentication For SSH

Remove unencrypted access. No one should use telnet, ftp or http to manage servers anymore.

SSH, SFTP and https are the accepted standards. For even better security, get rid of password

authentication on SSH altogether. Instead, use SSH keys. Each user has a public key and a private

key. The private key is kept by the user. The public key is kept on the server. When the user tries

to login, SSH makes sure the public key matches the private key. Once password logins are

disabled, there’s no risk of a successful brute force attack against a weak password.

2. Strong Passwords

A security hardened server is a challenge for criminals, but you would be surprised how many

server administrators leave the front door wide open. People—including those who should know

better—tend to choose easily guessed passwords. Last year, brute force attacks against servers

with weak SSH passwords resulted in a spate of ransomware attacks. Use long and random

passwords—long passphrases are better and finally restrict users with login type access.

3. Install and Configure the CSF Firewall

The Config Server Firewall is a feature-rich, free firewall that can protect a server against a wide

variety of attacks. Its features include stateful packet inspection, authentication failure rate

limiting, flood protection, directory watching, and the use of external block lists. CSF is a fantastic

tool, and is a lot easier to manage than iptables.

4. Install and Configure Fail2Ban

Every server on the web is plagued by bots looking for weaknesses. Fail2Ban trawls through your

server’s logs in search of patterns that indicate malicious connections, such as too many failed

authentication attempts or too many connections from the same IP. It can then block connections

from those IPs and notify an administrator account.

5. Install Malware Scanning Software

Ideally, you want to keep malicious individuals out of your server, but if they do manage to breach

the server’s security, you want to know about it as soon as possible. ClamAV is an excellent

malware scanning tool for Linux, and rkhunter is useful for finding rootkits. In combination,

there’s a good chance they will find any malware a hacker might install on a server. AIDE can be

used to generate a hashed table of files on the system and then compare the hash count of the files

daily to confirm no changes have been made to system-critical files.

6. Keep Software Up-To-Date

Out-of-date software is likely to contain security vulnerabilities that are known to hackers, as

Equifax recently discovered to everyone’s cost. If you ignore all the other advice in this article —

which you should not—you should at the very least update using your Linux distribution’s package

manager.

7. Backup Regularly

You may not think of backups as a security measure, but the main reason we secure a server is to

keep the data stored on it safe. It’s impossible to guarantee that a server will never be compromised,

so data should be encrypted and backed-up to an offsite location. Regular testing of recovery from

comprehensive backups will neuter ransomware attacks.

8. Monitor Logs

Logs are a vitally important security tool. A server collects enormous amounts of information

about what it does and who connects to it. Patterns in that data often reveal malicious behavior or

security compromises. Logwatch is an excellent daily summary tool that can analyze, summarize,

and generate reports about what’s happening on your server. Logsentry can be used for hourly

reports for more active monitoring of ingress.

9. Turn Off Unnecessary Services

Any internet-facing software that isn’t essential to the server’s function should be disabled. The

fewer points of contact between the server’s internal environment and the outside world, the better.

Most Linux distributions—including CentOS and Ubuntu—include a tool for managing services.

This also applies to the web server engine itself, turn of modules you don’t need, remove language

modules not in use, disable web server status, and debugging pages. The less information you

provide about your underlying infrastructure the smaller the footprint becomes to attack you with.

10. Install ModSecurity

ModSecurity is a Web Application Firewall—it operates at a higher level than the CSF firewall

and is designed to deal with threats against the application layer. In a nutshell, it stops many types

of attack against web applications, including content management systems like WordPress and

eCommerce stores like Magento. ModSecurity used to be an Apache module, but it is now

available for NGINX too.

Consider these options also:

Take steps to mitigate XSS attacks (Cross Site Scripting) by adding the settings to the servers that

force the server and client to confirm who they are talking to. OWASP has a wealth of information

and tutorials.

Use HTTP2 (or http1.2) Implementations of HTTP/2 MUST use TLS version 1.2 or higher for

HTTP/2 over TLS. This upgraded engine for http benefits server load by talking binary to the client

rather than text and hat improve interoperability, it reduces exposure to known security

vulnerabilities and reduce the potential for site display issues from different client browser access.

