

Session 7

CSFR, Command Injection

Cross-site request forgery (CSRF)

In this section, we'll explain what cross-site request forgery is, describe some examples of common

CSRF vulnerabilities, and explain how to prevent CSRF attacks.

What is CSRF?

Cross-site request forgery (also known as CSRF) is a web security vulnerability that allows an
attacker to induce users to perform actions that they do not intend to perform. It allows an attacker
to partly circumvent the same origin policy, which is designed to prevent different websites from
interfering with each other.

What is the impact of a CSRF attack?

In a successful CSRF attack, the attacker causes the victim user to carry out an action

unintentionally. For example, this might be to change the email address on their account, to change

their password, or to make a funds transfer. Depending on the nature of the action, the attacker

might be able to gain full control over the user's account. If the compromised user has a privileged

role within the application, then the attacker might be able to take full control of all the application's

data and functionality.

 How does CSRF work?

For a CSRF attack to be possible, three key conditions must be in place:

 A relevant action. There is an action within the application that the attacker has a reason

to induce. This might be a privileged action (such as modifying permissions for other users)

or any action on user-specific data (such as changing the user's own password).

 Cookie-based session handling. Performing the action involves issuing one or more

HTTP requests, and the application relies solely on session cookies to identify the user who

has made the requests. There is no other mechanism in place for tracking sessions or

validating user requests.

 No unpredictable request parameters. The requests that perform the action do not

contain any parameters whose values the attacker cannot determine or guess. For example,

when causing a user to change their password, the function is not vulnerable if an attacker

needs to know the value of the existing password.

For example, suppose an application contains a function that lets the user change the email address

on their account. When a user performs this action, they make an HTTP request like the following:

POST /email/change HTTP/1.1

Host: vulnerable-website.com

Content-Type: application/x-www-form-urlencoded

Content-Length: 30

Cookie: session=yvthwsztyeQkAPzeQ5gHgTvlyxHfsAfE

email=wiener@normal-user.com

This meets the conditions required for CSRF:

 The action of changing the email address on a user's account is of interest to an attacker.

Following this action, the attacker will typically be able to trigger a password reset and

take full control of the user's account.

 The application uses a session cookie to identify which user issued the request. There are

no other tokens or mechanisms in place to track user sessions.

 The attacker can easily determine the values of the request parameters that are needed to

perform the action.

With these conditions in place, the attacker can construct a web page containing the following

HTML:

<html>

 <body>

 <form action="https://vulnerable-website.com/email/change" method="POST">

 <input type="hidden" name="email" value="pwned@evil-user.net" />

 </form>

 <script>

 document.forms[0].submit();

 </script>

 </body>

</html>

If a victim user visits the attacker's web page, the following will happen:

 The attacker's page will trigger an HTTP request to the vulnerable web site.

 If the user is logged in to the vulnerable web site, their browser will automatically include

their session cookie in the request (assuming SameSite cookies are not being used).

 The vulnerable web site will process the request in the normal way, treat it as having been

made by the victim user, and change their email address.

How to construct a CSRF attack

Manually creating the HTML needed for a CSRF exploit can be cumbersome, particularly where

the desired request contains a large number of parameters, or there are other quirks in the request.

The easiest way to construct a CSRF exploit is using the CSRF PoC generator that is built in to

Burp Suite Professional:

 Select a request anywhere in Burp Suite Professional that you want to test or exploit.

 From the right-click context menu, select Engagement tools / Generate CSRF PoC.

 Burp Suite will generate some HTML that will trigger the selected request (minus cookies,

which will be added automatically by the victim's browser).

 You can tweak various options in the CSRF PoC generator to fine-tune aspects of the

attack. You might need to do this in some unusual situations to deal with quirky features

of requests.

 Copy the generated HTML into a web page, view it in a browser that is logged in to the

vulnerable web site, and test whether the intended request is issued successfully and the

desired action occurs.

How to deliver a CSRF exploit

The delivery mechanisms for cross-site request forgery attacks are essentially the same as for

reflected XSS. Typically, the attacker will place the malicious HTML onto a web site that they

control, and then induce victims to visit that web site. This might be done by feeding the user a

link to the web site, via an email or social media message. Or if the attack is placed into a popular

web site (for example, in a user comment), they might just wait for users to visit the web site.

Note that some simple CSRF exploits employ the GET method and can be fully self-contained

with a single URL on the vulnerable web site. In this situation, the attacker may not need to employ

an external site, and can directly feed victims a malicious URL on the vulnerable domain. In the

preceding example, if the request to change email address can be performed with the GET method,

then a self-contained attack would look like this:

Preventing CSRF attacks

The most robust way to defend against CSRF attacks is to include a CSRF token within relevant

requests. The token should be:

 Unpredictable with high entropy, as for session tokens in general.

 Tied to the user's session.

 Strictly validated in every case before the relevant action is executed.

Common CSRF vulnerabilities

Most interesting CSRF vulnerabilities arise due to mistakes made in the validation of CSRF tokens.

https://portswigger.net/burp/pro
https://portswigger.net/web-security/csrf/tokens
https://portswigger.net/web-security/csrf/tokens

In the previous example, suppose that the application now includes a CSRF token within the

request to change the user's password:

POST /email/change HTTP/1.1

Host: vulnerable-website.com

Content-Type: application/x-www-form-urlencoded

Content-Length: 68

Cookie: session=2yQIDcpia41WrATfjPqvm9tOkDvkMvLm

csrf=WfF1szMUHhiokx9AHFply5L2xAOfjRkE&email=wiener@normal-user.com

This ought to prevent CSRF attacks because it violates the necessary conditions for a CSRF

vulnerability: the application no longer relies solely on cookies for session handling, and the

request contains a parameter whose value an attacker cannot determine. However, there are various

ways in which the defense can be broken, meaning that the application is still vulnerable to CSRF.

Common CSRF vulnerabilities

Most interesting CSRF vulnerabilities arise due to mistakes made in the validation of CSRF tokens.

In the previous example, suppose that the application now includes a CSRF token within the

request to change the user's password:

POST /email/change HTTP/1.1

Host: vulnerable-website.com

Content-Type: application/x-www-form-urlencoded

Content-Length: 68

Cookie: session=2yQIDcpia41WrATfjPqvm9tOkDvkMvLm

csrf=WfF1szMUHhiokx9AHFply5L2xAOfjRkE&email=wiener@normal-user.com

This ought to prevent CSRF attacks because it violates the necessary conditions for a CSRF

vulnerability: the application no longer relies solely on cookies for session handling, and the

request contains a parameter whose value an attacker cannot determine. However, there are various

ways in which the defense can be broken, meaning that the application is still vulnerable to CSRF.

Validation of CSRF token depends on request method

Some applications correctly validate the token when the request uses the POST method but skip

the validation when the GET method is used.

In this situation, the attacker can switch to the GET method to bypass the validation and deliver a

CSRF attack:

https://portswigger.net/web-security/csrf/tokens

GET /email/change?email=pwned@evil-user.net HTTP/1.1

Host: vulnerable-website.com

Cookie: session=2yQIDcpia41WrATfjPqvm9tOkDvkMvLm

Validation of CSRF token depends on token being present

Some applications correctly validate the token when it is present but skip the validation if the token

is omitted.

In this situation, the attacker can remove the entire parameter containing the token (not just its

value) to bypass the validation and deliver a CSRF attack:

POST /email/change HTTP/1.1

Host: vulnerable-website.com

Content-Type: application/x-www-form-urlencoded

Content-Length: 25

Cookie: session=2yQIDcpia41WrATfjPqvm9tOkDvkMvLm

email=pwned@evil-user.net

CSRF token is not tied to the user session

Some applications do not validate that the token belongs to the same session as the user who is

making the request. Instead, the application maintains a global pool of tokens that it has issued and

accepts any token that appears in this pool.

In this situation, the attacker can log in to the application using their own account, obtain a valid

token, and then feed that token to the victim user in their CSRF attack.

CSRF token is not tied to the user session

Some applications do not validate that the token belongs to the same session as the user who is

making the request. Instead, the application maintains a global pool of tokens that it has issued and

accepts any token that appears in this pool.

In this situation, the attacker can log in to the application using their own account, obtain a valid

token, and then feed that token to the victim user in their CSRF attack.

CSRF token is tied to a non-session cookie

In a variation on the preceding vulnerability, some applications do tie the CSRF token to a cookie,

but not to the same cookie that is used to track sessions. This can easily occur when an application

employs two different frameworks, one for session handling and one for CSRF protection, which

are not integrated together:

POST /email/change HTTP/1.1

Host: vulnerable-website.com

Content-Type: application/x-www-form-urlencoded

Content-Length: 68

Cookie: session=pSJYSScWKpmC60LpFOAHKixuFuM4uXWF;

csrfKey=rZHCnSzEp8dbI6atzagGoSYyqJqTz5dv

csrf=RhV7yQDO0xcq9gLEah2WVbmuFqyOq7tY&email=wiener@normal-user.com

This situation is harder to exploit but is still vulnerable. If the web site contains any behavior that

allows an attacker to set a cookie in a victim's browser, then an attack is possible. The attacker can

log in to the application using their own account, obtain a valid token and associated cookie,

leverage the cookie-setting behavior to place their cookie into the victim's browser, and feed their

token to the victim in their CSRF attack.

CSRF token is simply duplicated in a cookie

In a further variation on the preceding vulnerability, some applications do not maintain any server-

side record of tokens that have been issued, but instead duplicate each token within a cookie and

a request parameter. When the subsequent request is validated, the application simply verifies that

the token submitted in the request parameter matches the value submitted in the cookie. This is

sometimes called the "double submit" defense against CSRF, and is advocated because it is simple

to implement and avoids the need for any server-side state:

POST /email/change HTTP/1.1

Host: vulnerable-website.com

Content-Type: application/x-www-form-urlencoded

Content-Length: 68

Cookie: session=1DQGdzYbOJQzLP7460tfyiv3do7MjyPw;

csrf=R8ov2YBfTYmzFyjit8o2hKBuoIjXXVpa

csrf=R8ov2YBfTYmzFyjit8o2hKBuoIjXXVpa&email=wiener@normal-user.com

In this situation, the attacker can again perform a CSRF attack if the web site contains any cookie

setting functionality. Here, the attacker doesn't need to obtain a valid token of their own. They

simply invent a token (perhaps in the required format, if that is being checked), leverage the

cookie-setting behavior to place their cookie into the victim's browser, and feed their token to the

victim in their CSRF attack.

OS command injection

In this section, we'll explain what OS command injection is, describe how vulnerabilities can be

detected and exploited, spell out some useful commands and techniques for different operating

systems, and summarize how to prevent OS command injection.

What is OS command injection?

OS command injection (also known as shell injection) is a web security vulnerability that allows

an attacker to execute arbitrary operating system (OS) commands on the server that is running an

application, and typically fully compromise the application and all its data. Very often, an attacker

can leverage an OS command injection vulnerability to compromise other parts of the hosting

infrastructure, exploiting trust relationships to pivot the attack to other systems within the

organization.

Executing arbitrary commands

Consider a shopping application that lets the user view whether an item is in stock in a particular

store. This information is accessed via a URL like:

https://insecure-website.com/stockStatus?productID=381&storeID=29

To provide the stock information, the application must query various legacy systems. For historical

reasons, the functionality is implemented by calling out to a shell command with the product and

store IDs as arguments:

stockreport.pl 381 29

This command outputs the stock status for the specified item, which is returned to the user.

Since the application implements no defenses against OS command injection, an attacker can

submit the following input to execute an arbitrary command:

& echo aiwefwlguh &

If this input is submitted in the productID parameter, then the command executed by the

application is:

stockreport.pl & echo aiwefwlguh & 29

The echo command simply causes the supplied string to be echoed in the output, and is a useful

way to test for some types of OS command injection. The & character is a shell command

separator, and so what gets executed is actually three separate commands one after another. As a

result, the output returned to the user is:

Error - productID was not provided

aiwefwlguh

29: command not found

The three lines of output demonstrate that:

 The original stockreport.pl command was executed without its expected arguments, and so

returned an error message.

 The injected echo command was executed, and the supplied string was echoed in the

output.

 The original argument 29 was executed as a command, which caused an error.

Placing the additional command separator & after the injected command is generally useful

because it separates the injected command from whatever follows the injection point. This reduces

the likelihood that what follows will prevent the injected command from executing.

Useful commands

When you have identified an OS command injection vulnerability, it is generally useful to execute

some initial commands to obtain information about the system that you have compromised. Below

is a summary of some commands that are useful on Linux and Windows platforms:

Purpose of command Linux Windows

Name of current user whoami whoami

Operating system uname -a ver

Network configuration ifconfig ipconfig /all

Network connections netstat -an netstat -an

Running processes ps -ef tasklist

Blind OS command injection vulnerabilities

Many instances of OS command injection are blind vulnerabilities. This means that the application

does not return the output from the command within its HTTP response. Blind vulnerabilities can

still be exploited, but different techniques are required.

Consider a web site that lets users submit feedback about the site. The user enters their email

address and feedback message. The server-side application then generates an email to a site

administrator containing the feedback. To do this, it calls out to the mail program with the

submitted details. For example:

mail -s "This site is great" -aFrom:peter@normal-user.net feedback@vulnerable-website.com

The output from the mail command (if any) is not returned in the application's responses, and so

using the echo payload would not be effective. In this situation, you can use a variety of other

techniques to detect and exploit a vulnerability.

Detecting blind OS command injection using time delays

You can use an injected command that will trigger a time delay, allowing you to confirm that the

command was executed based on the time that the application takes to respond. The ping command

is an effective way to do this, as it lets you specify the number of ICMP packets to send, and

therefore the time taken for the command to run:

& ping -c 10 127.0.0.1 &

This command will cause the application to ping its loopback network adapter for 10 seconds.

Exploiting blind OS command injection by redirecting output

You can redirect the output from the injected command into a file within the web root that you can

then retrieve using your browser. For example, if the application serves static resources from the

filesystem location /var/www/static, then you can submit the following input:

& whoami > /var/www/static/whoami.txt &

The > character sends the output from the whoami command to the specified file. You can then

use your browser to fetch https://vulnerable-website.com/whoami.txt to retrieve the file, and view

the output from the injected command.

