EXAMPLE 1: TRIM LOSS PROBLEM

A manufacturer of cylindrical containers receives tin sheets in widths of 30 cm and 60 cm respectively. For these containers the sheets are to be cut to three different widths of 15 cm, 21 cm and 27 cm respectively. The number of containers to be manufactured from these three widths are 400, 200 and 300 respectively. The bottom plates and top covers of the containers are purchased directly from the market. There is no limit on the lengths of standard tin sheets. Formulate the LPP for the production schedule that minimises the trim losses.

The possible cutting combinations (plans) for both types of sheets are shown in the table below:

Width (cm)	i = I (30 cm)			i = II (60 cm)					
	X11	X ₁₂	X13	X ₂₁	X ₂₂	X ₂₃	X24	X25	X ₂₆
15	2	0	0	4	2	2	1	0	0
21	0	1	0	0	1	0	2	1	0
27	0	0	1	0	0	1	0	1	2
Trim Loss (cm)	0	9	3	0	9	3	3	12	6

Solve by using LPP

EXAMPLE 2: DIET PROBLEM

Vitamins B_1 and B_2 are found in two foods F_1 and F_2 . 1 unit of F_1 contains 3 units of B_1 and 4 units of B_2 . 1 unit of F_2 contains 5 units of B_1 and 3 units of B_2 respectively. Minimum daily prescribed consumption of B_1 & B_2 is 50 and 60 units respectively.

Cost per unit of $F_1 \& F_2$ is Rs. 6 & Rs. 3 respectively.

Formulate as LPP.

EXAMPLE 3: FARM PLANNING

A farmer has 200 acres of land. He produces three products X, Y & Z. Average yield per acre for X, Y & Z is 4000, 6000 and 2000 kg.

Selling price of X, Y & Z is Rs. 2, 1.5 & 4 per kg respectively. Each product needs fertilizers. Cost of fertilizer is Rs. 1 per kg. Per acre need for fertilizer for X, Y & Z is 200, 200 & 100 kg respectively. Labour requirements for X, Y & Z is 10, 12 & 10 man hours per acre. Cost of labour is Rs. 40 per man hour. Maximum availability of labour is 20, 000 man hours.

Formulate as LPP to maximise profit.