Poison Distribution

Dr Bibhunandini Das

Poisson Probability Distribution

- Poison- named after the French mathematician S. Poison
- Widely used for a discrete random variable
- The Poison process measures the number of occurrences of an outcome of a discrete random variable in a predetermined time interval, space or volume, for which the average number of occurrences is known or can be determined

Poisson Probability Distribution

- The Poison probability distribution is an approximation to a binomial distribution when the probability of success, p is very small and n is large
- μ = np is small, preferably np>7
- Often called the *law of improbable events*

Poisson Probability Distribution

- Implies that the probability, p, of a particular outcomes occurrence is very small
- Poison distribution occurs in a business situations-there are only few successes in an interval of time against a large number of failures and vice versa
- Has single independent outcomes that are mutually exclsusive

Conditions for Poisson Process

- The outcomes in any interval of time occur randomly and independently of one another
- The probability of occurrence of an outcome in a small interval of time is proportional to the length of the interval but is independent of the specific time interval

Conditions for Poisson Process

- The probability of occurrence of more than one outcome in a small interval of time is proportional to the length of the interval but is independent of the specific time interval
- The average number of occurrence of outcomes is constant in equal intervals of time

Poisson Distribution

•
$$P(r) = \frac{e^{-m}m^r}{r!}$$

- Where r = 0, 1, 2, 3, 4,....
- e= 2.7183 (the base of natural logarithms)
- m = the mean of the Poisson distribution (np) or the average number of occurences of an event

Poisson Distribution

- The Poison probability distribution is concerned with certain processes that can be described by a discrete random variable
- The probabilities of 0, 1, 2.....successes are given by the successive terms of the expansion

•
$$e^{-m}\left(1+m+\frac{m^2}{2!}+\frac{m^3}{3!}+\cdots+\frac{m^r}{r!}+\cdots+\right)$$

Poison Distribution

Number of Successes (X)	Probability P(X)	Number of Successes (X)	Probability P(X)
0	e^{-m}	4	$\frac{m^4 e^{-m}}{4!}$
1	me^{-m}	:	:
2	$\frac{m^2 e^{-m}}{2!}$	r	$\frac{m^r e^{-m}}{r!}$
3	$\frac{m^3 e^{-m}}{3!}$:	:

Constants of the Poisson Distribution

- Since p is very small in case of Poisson distribution, the value of is almost equal to 1
- The constants of the Poisson distribution can be easily obtained by putting 1 in place of q in the constants of the binomial distribution

Constants of the Poisson Distribution

- The various constants of the Poisson distribution are:
 - The mean of the Poisson distribution = m, and
 - The standard deviations is \sqrt{m} or $\mu_2 = m$

Poison Distribution

- A discrete distribution with a single parameter *m*
- As *m* increases, the distribution shifts to the right.
- All poison probability distributions are skewed to the right
- Probability of rare events (the probabilities tend to be high for small number of occurrences)

