RNA Secondary Structure Prediction

What is RNA and where is it used Proteins and nucleic acids, like RNA(ribonucleic acid) and DNA(deoxyribonucleic acid),play an important role in reproducing and maintaining life:

Proteins are important because they control processes like energy metabolism, intercellular communication and biosyntheses. They synthesized using the genetic information which is stored in the DNA

- RNA molecules are used for the synthesis of proteins, they act as messengers.
- Both, DNA and RNA are composed of subunits, the so-called nucleotides or bases.
- There are only four different types of nucleotides in a molecule, but DNA and RNA do have other sets of nucleotides.
- Nucleotides consist of a nitrogen-containing base, a five-carbon s ring and a phosphate group .

- The nucleotides are linked together by phosphodiester linkages through the hydroxyl group on the sugar on one nucleotide and the phosphate on the next one.
- As <u>a result one can observe a strand with the so-called 5'-end</u>, where a
- free phosphate group can be found, and the 3'-end with a free hydroxyl group.
- The nitrogenous base has the structure of a planar ring and is either a purine or a pyrimidine.

The structure of RNA

- In RNA nucleotides the sugar which is used is ribose and therefore they are also called ribonucleotides.
- The purine bases are also adenosine (A) and guanine (G), but the pyrimidine bases are cytosine (C) and uracil (U).
 - R NA molecules are much smaller than DNA molecules, but they are also linear polymers
- .Moreover they do not seem to have a regular threedimensional structure and are mostly single stranded.
- This makes them more flexible than DNA and they can also act also as enzymes
 cont...

- The molecules often contain a very stable three dimensional structure with unpaired regions, which are very flexible.
- The wobble base-pairs make up an important factor for this flexibility.
- Beside the Watson-Crick base-pairs, A:U and G:C, is the wobble base-pair, G:U, one of the most common base-pairs in RNA molecules .
- But actually any of the bases can build a hydrogen bond with any other base. *cont...*

- Another difference between DNA and RNA is that doublestranded RNA builds up Alpha-helices while double-stranded DNA builds up Beta-helices .
- The difference becomes apparent observing the size of the major grooves of the helices:
- The major groove of the A-helix is rather narrow and deeper.
- This is due to ribose needing more space than deoxyribose.

Primary, secondary and tertiary structures

The primary structure of a molecule describes only the one-dimensional sequence of it components.

The primary structure of RNA is almost identical to the primary structure of DNA, besides the components being A,C,G and U instead of T.

The secondary structure of molecules is more complex
 than the primary structure and can be drawn in two dimensional space .

By definition, the local conformation of polymers is called secondary structure .

For RNA and DNA the secondary structure is their

base-paired structure. cont...

- RNA secondary structure is mainly composed of double stranded RNA regions formed by folding the single stranded RNA molecule back on itself.
- The tertiary structure is the overall three-dimensional structure of molecules .
- It is built on the interactions of the lower-order secondary structures .
- Helices are examples of RNA and DNA tertiary structures.
- pseudoknot is a tertiary structure of RNA.

Importance of RNA secondary structure prediction

- Important aspect of the prediction of RNA secondary structure is that there are many sequences whose structures have not yet been experimentally determined and
 - for which there are no homologues in the databases from which the structure could be derived. Hence it is a good idea to predict the structure.
- Moreover it has been shown that RNA secondary structure prediction has applications to the design of nucleic acid probes .
 cont...

- It is also used by molecular biologists to help predict conserved structural elements in noncoding regions of gene transcripts.
- Finally there is also an application in predicting structures that are conserved during evolution .

Different secondary structure elements

1. Stem Loops (Hairpin Loops)

is a lollipop shaped structure formed when a single stranded nucleic acid molecule loops back on itself to form a complementary double helix (stem) topped by a loop.

stem loops are atleast 4 bases long.

2. Bulge Loops

- Bulge loops are commonly found in helical segments of cellular RNAs.
- Bulge loops occur when bases on one side of the structure cannot form base pairs and they cause bends in the helix.

3. Interior Loops

Interior loops occur when bases on both sides of the structure cannot form base pairs.

4. Junctions or Mltiloops

Junctions include two or more double stranded regions converging to form a closed structure

Pseudoknots

- A pseudoknot is a tertiary structural element of RNA.
- It is formed by base-pairing between an already existing secondary structure loop and a free ending.
- Nucleotides within a hairpin loop form base pairs with nucleotides outside the stem .
- Hence basepairs occur that overlap each other in their sequen position.

ASSUMPTIONS IN RNA STRUCTURE PREDICTION

- The most likely structure is similar to the energetically most stable structure.
- The energy associated with any position in the structure is only influenced by local sequence and structure.
 - The structure formed does not produce pseudoknots.

- One method of representing the base pairs of a secondary structure is to draw the structure in a circle.
- An arc is drawn to represent each base pairing found in the structure.
- If any of the arc cross, then a pseudoknot is present.

RNA structure prediction methods

- Base Pair Maximization
- Energy Minimization

Base Pairs Maximization This approach is to find the configuration with the greatest numbers of paired bases.

- Given a RNA sequence, determine the set of maximal base pairs(no base pair across each other)
 - Align bases according to their ability to pair with each other gives an approach to determining the optimal structure

Methods adopted

- Dynamic programming approach
- Nussinov Algorithm

Nussinov Algorithm

- Four ways to get the optimal structure between position I and j from the optimal substructure
- 1. Add i,j pair onto best structure found for subsequence i+1,j-1
- 2. Add unpaired position i onto best structure for subsequence i + 1,
- 3. Add unpaired position i onto best structure for subsequence I, j-1
- 4. Combine two optimal structures i,k and k+1,j

NussinovAlgorithm

- compares a sequence against itself in a n*n matrix
- Find the maximum of the scores for the four possible structures at

a particular position.

Base Pair Maximization - Drawbacks

- Base pair maximization will not necessarily lead to the most stable structure
 - May create structure with many interior loops or hairpins which are energetically unfavorable
- Comparable to aligning sequences with scattered matches not biologically reasonable

Energy Minimization

- Thermodynamic Stability
 - Estimated using experimental techniques
 - Theory: Most Stable is the Most likely
- No Pseudknots due to algorithm limitations
 - ses Dynamic Programming alignment technique
- Attempts to maximize the score taking into account thermodynamics
- Gaps represent some form of a loop
- The most widely used software that incorporates this minimum free energy algorithm is MFOLD/RNAfold/ViennaRNA

Energy Minimization Drawbacks

- Compute only one optimal structure
- Usual drawbacks of purely mathematical approaches
 - Similar difficulties in other algorithms
 - Protein structure
 - Exon finding