S-Domain Analysis

Kirchhoff's Laws in s-Domain

t domain

Kirchhoff's current law (KCL)
s domain

$i_{1}(t)+i_{2}(t)-i_{3}(t)+i_{4}(t)=0 \quad I_{1}(s)+I_{2}(s)-I_{3}(s)+I_{4}(s)=0$

Kirchhoff's voltage law (KVL)

$-v_{1}(t)+v_{2}(t)+v_{3}(t)=0$
$-V_{1}(s)+V_{2}(s)+V_{3}(s)=0$

Signal Sources in s Domain

Time and s-Domain Element Models
 Impedance and Voltage Source for Initial Conditions

Time Domain
Resistor:
$v_{R}(t)=R i_{R}(t)$

Inductor:
$v_{L}(t)=L \frac{d i_{L}(t)}{d t}$

s-Domain
Resistor:
$V_{R}(s)=R I_{R}(s)$

Inductor:
$V_{L}(s)=L s I_{L}(s)-$
$V_{L}(s)=L s I_{L}(s)-$
$L i_{L}(0)$

Capacitor:
$v_{C}(t)=\frac{1}{C}{ }_{=0}^{i} i_{c}(t) d t$
$+v_{C}(0)$

Capacitor:

Impedance and Voltage Source for Initial Conditions

- Impedance Z(s)

$$
Z(s)=\frac{\text { voltage transform }}{\text { current } \mathrm{tr} \text { ansform }}
$$

with all initial conditions set to zero

- Impedance of the three passive elements

$$
\begin{array}{ll}
Z_{R}(s)=\frac{V_{R}(s)}{I_{R}(s)}=R \\
Z_{L}(s)=\frac{V_{L}(s)}{I_{L}(s)}=L s & \text { with } i_{L}(0)=0 \\
Z_{C}(s)=\frac{V_{C}(s)}{I_{C}(s)}=\frac{1}{C s} & \text { with } v_{C}(0)=0
\end{array}
$$

Time and s-Domain Element Models
 Admittance and Current Source for Initial Conditions

Admittance and Current Source for Initial Conditions

- Admittance Y(s)

$$
Y(s)=\frac{\text { current } \mathrm{tr} \text { ansform }}{\text { voltage transform }}=\frac{1}{Z(s)}
$$

with all initial conditions set to zero

- Admittance of the three passive elements

$$
\begin{array}{ll}
Y_{R}(s)=\frac{I_{R}(s)}{V_{R}(s)}=\frac{1}{R} \\
Y_{L}(s)=\frac{I_{L}(s)}{V_{L}(s)}=\frac{1}{L s} & \text { with } i_{L}(0)=0 \\
Y_{C}(s)=\frac{I_{C}(s)}{V_{C}(s)}=C s & \text { with } v_{C}(0)=0
\end{array}
$$

Example: Solve for Current Waveform i(t)

By KVL: $-\frac{V_{A}}{s}+V_{R}(s)+V_{L}(s)=0$
Resistor: $V_{R}(s)=R I(s) \quad$ Inductor: $V_{L}(s)=\operatorname{LsI}(s)-L i_{L}(0)$

$$
\begin{aligned}
& -\frac{V_{A}}{s}+R I(s)+L s I(s)-L i_{L}(0)=0 \\
& \begin{aligned}
I(s) & =\frac{V_{A} \mid L}{s(s+R \mid L)}+\frac{i_{L}(0)}{s+R \mid L} \\
& =\frac{V_{A} R}{s}-\frac{V_{A} \mid R}{s+R \mid L}+\frac{i_{L}(0)}{s+R \mid L}
\end{aligned}
\end{aligned}
$$

 forced response natural response

Series Equivalence and Voltage Division

Parallel Equivalence and Current Division

$$
\begin{aligned}
& I_{1}(s)=Y_{1}(s) V(s) \\
& I_{2}(s)=Y_{2}(s) V(s) \\
& \begin{aligned}
& \mathrm{KCL}: \quad I(s)=I(s)+I_{2}(s) \\
&=\left(Y_{1}(s)+Y_{2}(s)\right) V(s) \\
& \Rightarrow \quad Y_{E Q}(s)=Y_{1}(s)+Y_{2}(s)
\end{aligned} \\
& \begin{aligned}
I_{1}(s)= & \frac{Y_{1}(s)}{Y_{E Q}(s)} I(s) \\
I_{2}(s)= & =\frac{Y_{2}(s)}{Y_{E Q}(s)} I(s)
\end{aligned}
\end{aligned}
$$

Example:

Equivalence Impedance and Admittance

$\left.\begin{array}{l}\text { Inductor current }=0 \\ \text { capacitor voltage }=0\end{array}\right\}$ at $\mathrm{t}=0$
Find equivalent impedance at A and B Solve for $\mathrm{v}_{2}(\mathrm{t})$
$Y_{E Q 1}(s)=\frac{1}{Z_{E Q 1}(s)}=\frac{1}{R}+C s=\frac{R C s+1}{R}$
$Z_{E Q}(s)=L s+Z_{E Q 1}(s)=L s+\frac{R}{R C s+1}$
$=\frac{R L C s^{2}+L s+R}{R C s+1}$
$V_{2}(s)=\frac{Z_{E Q 1}(s)}{Z_{E Q}} V_{1}(s)$
$=\frac{R}{R C L s^{2}+L s+R} V_{1}(s)$

General Techniques for s-Domain Circuit Analysis

- Node Voltage Analysis (in s-domain)
- Use Kirchhoff's Current Law (KCL)
- Get equations of node voltages
- Use current sources for initial conditions
- Voltage source \longrightarrow current source
- Mesh Current Analysis (in s-domain)
- Use Kirchhoff’s Voltage Law (KVL)
- Get equations of currents in the mesh
- Use voltage sources for initial conditions
- Current source \longrightarrow voltage source
(Works only for "Planar" circuits)

Formulating Node-Voltage Equations

Step 0: Transform the circuit into the s domain using current sources to represent capacitor and inductor initial conditions
Step 1: Select a reference node. Identify a node voltage at each of the non-reference nodes and a current with every element in the circuit
Step 2: Write KCL connection constraints in terms of the element currents at the non-reference nodes
Step 3: Use the element admittances and the fundamental property of node voltages to express the element currents in terms of the node voltages
Step 4: Substitute the device constraints from Step 3 into the KCL connection constraints from Step 2 and arrange the resulting equations in a standard form

Example: Formulating Node-Voltage Equations

t domain
 node

Formulating Node-Voltage Equations (Cont'd)

Step 2: Apply KCL at nodes A and B:
Node A: $I_{\mathrm{s}}(s)-\frac{i_{L}(0)}{s}-I_{1}(s)-I_{2}(s)=0$
Node B: $C v_{C}(0)+\frac{i_{\underline{L}}}{s} \frac{(0)}{s}+I_{1}(s)-I_{S}(s)=0$
Step 3: Express element equations in terms of node voltages

$$
\begin{aligned}
& \left.I_{1}(s)=Y_{L}(s) \boldsymbol{V}_{A}(s)-V_{B}(s)\right]=\frac{1}{L s}\left[\begin{array}{l}
A \\
A
\end{array}(s)-V_{B}(s)\right] \\
& I_{2}(s)=Y_{R}(s) V_{A}(s)=G V_{A}(s) \text { where } G=1 \not R \\
& I_{3}(s)=Y_{C}(s) V_{B}(s)=C s V_{B}(s)
\end{aligned}
$$

Step 4: Substitute eqns. in Step 3 into eqns. in Step 2 and collect common terms to yield node-voltage eqns.

Node A : $\left(G+\frac{1}{L s} \oint_{A}(s)-\left(\frac{1}{L s} \psi_{B}(s)=I_{S}(s)-\frac{i_{L}(0)}{s}\right.\right.$
Node B : $-\left(\frac{1}{L s}\right)_{A}(s)+\left(\frac{1}{L s}+C s\right) V_{B}(s)=C v_{C}(0)+\frac{i_{L}}{} \frac{(0)}{s}$

Solving s-Domain Circuit Equations

- Circuit Determinant: $\Delta(s)=\left|\begin{array}{cc}G+1 \mid L s & -1 \mid L s \\ -1 / L s & C s+1 / L s\end{array}\right|$

$$
\begin{aligned}
& =(G+1 / L s)(C s+1 / L s)-(1 / L s)^{2} \\
& =\frac{G L C s^{2}+C s+G}{L s}
\end{aligned}
$$

Depends on circuit element parameters: $\mathrm{L}, \mathrm{C}, \mathrm{G}=1 / \mathrm{R}$, not on driving force and initial conditions

- Solve for node A using Cramer's rule:

$$
\begin{aligned}
V_{A}(s) & =\frac{\Delta_{A}(s)}{\Delta(s)}=\frac{\left|\begin{array}{cc}
I_{S}(s)+i_{L}(0) \mid s & -1 \mid L s \\
i_{L}(0) / s+C v_{C}(0) & C s+1 / L s
\end{array}\right|}{\Delta(s)} \\
& =\underbrace{\frac{\left(L C s^{2}+1\right) I_{S}(s)}{G L C s^{2}+C s+G}}_{\begin{array}{c}
\text { Zero State }
\end{array}}+\underbrace{\begin{array}{c}
\text { when input sources } \\
\text { are turned off }
\end{array}}_{\begin{array}{c}
\text { Zero input } \\
\text { when initial condition } \\
\text { sources are turned off }
\end{array}}
\end{aligned}
$$

Solving s-Domain Circuit Eqns. (Cont'd)

- Solve for node B using Cramer's rule:

$$
\begin{aligned}
V_{B}(s) & =\frac{\Delta_{B}(s)}{\Delta(s)}=\begin{array}{cc}
\left|\begin{array}{cc}
G+1 \mid L s & I_{S}(s)-i_{L}(0) \\
-1 / L s & i_{L}(0) / s+C v_{C}(0)
\end{array}\right| \\
& =\underbrace{\frac{I_{S}(s)}{G L C s^{2}+C s+G}}_{\text {Zero State }}+\underbrace{\frac{G L i_{L}(0)+(G L s+1) C v_{C}(0)}{G L C s^{2}+C s+G}}_{\text {Zero input }}
\end{array}
\end{aligned}
$$

Network Functions

Network function $=\frac{\text { Zero }- \text { state Response Transform }}{\text { Input Signal Transform }}$

- Driving-point function relates the voltage and current at a given pair of terminals called a port $Z(s)=\frac{V(s)}{I(s)}=\frac{1}{Y(s)}$
- Transfer function relates an input and response at different ports in the circuit
$T_{V}(s)=$ Voltage Transfer Function $=\frac{V_{2}(s)}{V_{1}(s)}$

$T_{I}(s)=$ Current Transfer Function $=\frac{I_{2}(s)}{I_{1}(s)}$
$T_{Y}(s)=$ Transfer Admittance $=\frac{I_{2}(s)}{V_{1}(s)}$
$T_{Z}(s)=$ Transfer Impedance $=\frac{V_{2}(s)}{I_{1}(s)}$

Calculating Network Functions

- Driving-point impedance
$Z_{E Q}(s)=Z_{1}(s)+Z_{2}(s)$
- Voltage transfer function:
$V_{2}(s)=\left\lvert\, \frac{Z_{2}(s)}{Z_{1}(s)+Z_{2}(s)}{ }_{V}^{\mid}(s)\right.$
$T_{V}(s)=\frac{V_{2}(s)}{V_{1}(s)}=\frac{Z_{2}(s)}{Z_{1}(s)+Z_{2}(s)}$
- Driving-point admittance
$Y_{E Q}(s)=Y_{1}(s)+Y_{2}(s)$
- Voltage transfer function:
$I_{2}(s)=\left[\frac{Y_{2}(s)}{Y_{1}(s)+Y_{2}(s)} Y_{1}(s)\right.$
$T_{I}(s)=\frac{I_{2}(s)}{I_{1}(s)}=\frac{Y_{2}(s)}{Y_{1}(s)+Y_{2}(s)}$

Impulse Response and Step Response

- Input-output relationship in s-domain $Y(s)=T(s) X(s)$

- When input signal is an impulse $x(t)=d(t)$
$Y(s)=T(s) \times 1=T(s)$
- Impulse response equals network function
$-\mathrm{H}(\mathrm{s})=$ impulse response transform
$-\mathrm{h}(\mathrm{t})=$ impulse response waveform
- When input signal is a step $x(t)=u(t)$
$-G(s)=$ step response transform
$-\mathrm{g}(\mathrm{t})=$ step response waveform
$G(s)=\frac{T(s)}{s}=\frac{H(s)}{s}$
$g(s)=\int_{-0}^{t} h(t) d t, \quad h(t)(=) \frac{d g(t)}{d t} \quad \begin{aligned} & \text { (=) means equal almost everywhere, } \\ & \text { excludes those points at which } g(t) \\ & \text { has a discontinuity }\end{aligned}$

