
Android Insights - 3

Content Providers



Topics to be Covered

• Content Provider Basics

• Accessing a Content Provider

• Developing a Custom Content Provider

2/11/2012 2/18Android Insights - 3



Content Provider

• A content provider manages access to a central 
repository of data..

• The provider is part of an Android application, which 
often provides its own UI for working with the data.

• However, content providers are primarily intended to 
be used by other applications, which access the 
provider using a provider client object.

• Together, providers and provider clients offer a 
consistent, standard interface to data that also handles 
inter-process communication and secure data access.

2/11/2012 3/18Android Insights - 3



Accessing a Content Provider

• A content provider offers methods which 
correspond to the basic CRUD functions of 
persistent storage.

• An application accesses the data from a content 
provider with a ContentResolver client object. 
This object has methods that call identically-
named methods in the provider object.

• A content provider is identified by a content URI.

2/11/2012 4/18Android Insights - 3



Accessing a Content Provider...

• Example of getting a list of words from the User 
Dictionary provider:

• The content URI of the words table is: 
content://user_dictionary/words

• Read permission for accessing the content 
provider is also needed in the manifest file:

2/11/2012 5/18Android Insights - 3



Developing a Custom Content Provider
1. Extend the 

ContentProvider

class.

2. In the 
onCreate() 

method, create 
a new instance 
of the database 
helper class.

2/11/2012 6/18Android Insights - 3



Developing a Custom Content Provider...

Suppose, we need to provide access to 2 tables 
through this single content provider. As we have 
only one method per CRUD operation, we need 
a way to differentiate between accesses to these 
two tables.

3. We need to define content URI paths to each 
table. These are defined in a public final class 
which can be used by both provider and user 
as a contract: (see next slide)

2/11/2012 7/18Android Insights - 3



Developing a Custom Content Provider...

2/11/2012 8/18Android Insights - 3



Developing a Custom Content Provider...

Now comes the issue of differentiating between 
paths. The idea is to match a URI and then 
taking appropriate actions for the corresponding 
table path.

4. Add a UriMatcher to the provider and add 
expected URI patterns to it.

5. In the query() method, get the appropriate 
table name from the URI.

2/11/2012 9/18Android Insights - 3



Developing a Custom Content Provider...

2/11/2012 10/18Android Insights - 3



Developing a Custom Content Provider...

6. Now write the actual query method:

• You should add this URI to notification observables by 
calling setNotificationUri() so that if this 
cursor is directly used in a ListView, updating or 
inserting or deleting data in the table represented by 
this URI would notify the ListView of this data change.

2/11/2012 11/18Android Insights - 3



Developing a Custom Content Provider...

7. insert, update and delete methods are similar.

– insert() returns the Uri with the newly 
inserted ID appended.

– update() and delete() returns the number 
of rows affected.

– You should call 
notifyChangeToContentObservers(uri); 

before returning from these methods.

2/11/2012 12/18Android Insights - 3



Developing a Custom Content Provider...

We need to provide MIME type of the data returned by a URI.

8. The overridden method getType(Uri uri) needs to be filled-in.
– For common types of data such as as text, HTML, or JPEG, getType() 

should return the standard MIME type for that data.
– For content URIs that point to a row or rows of table data, getType() 

should return a MIME type in Android's vendor-specific MIME format: 
• Type part: vnd
• Subtype part:

– If the URI pattern is for a single row: android.cursor.item/
– If the URI pattern is for more than one row: android.cursor.dir/

• Provider-specific part: vnd.<name>.<type>
– You supply the <name> and <type>. 
– The <name> value should be globally unique, and the <type> value should be unique to 

the corresponding URI pattern. 
– A good choice for <name> is your company's name or some part of your application's 

Android package name. 
– A good choice for the <type> is a string that identifies the table associated with the URI. 

2/11/2012 13/18Android Insights - 3



Developing a Custom Content Provider...

2/11/2012 14/18Android Insights - 3

• Content type defined in the contract class:



Developing a Custom Content Provider...

2/11/2012 15/18Android Insights - 3

• getType() method in the provider class:



Developing a Custom Content Provider...

2/11/2012 16/18Android Insights - 3

9. We need to declare the provider in the 
manifest.xml file:



Developing a Custom Content Provider...

2/11/2012 17/18Android Insights - 3

10. Finally, we need to define permissions for applications who wish to access the provider.

Different forms of permissions:

• Single read-write provider-level permission

– One permission that controls both read and write access to the entire provider, specified 
with the android:permission attribute of the <provider> element in 
manifest.xml.

• Separate read and write provider-level permission

– A read permission and a write permission for the entire provider.

– Specified with the android:readPermission and android:writePermission
attributes of the <provider> element.

– They take precedence over the permission required by android:permission. 

• Path-level permission

– Read, write, or read/write permission for a content URI in your provider. 

– You specify each URI you want to control with a <path-permission> child element of 
the <provider> element. 

• Temporary permission 

– A permission level that grants temporary access to an application, even if the application 
doesn't have the permissions that are normally required.



Developing a Custom Content Provider...

2/11/2012 18/18Android Insights - 3

• Permission defined in manifest.xml of the 
provider:

• Permission defined in manifest.xml of the 
user:


