
Introduction


Apple designed the iOS platform with security at its core. When we set out to create 
the best possible mobile platform, we drew from decades of experience to build an 
entirely new architecture. We thought about the security hazards of the desktop 
environment, and established a new approach to security in the design of iOS. We 
developed and incorporated innovative features that tighten mobile security and 
protect the entire system by default. As a result, iOS is a major leap forward in security 
for mobile devices. 

Every iOS device combines software, hardware, and services designed to work together 
for maximum security and a transparent user experience. iOS protects not only the 
device and its data at rest, but the entire ecosystem, including everything users do 
locally, on networks, and with key Internet services. 

iOS and iOS devices provide advanced security features, and yet they’re also easy to  
use. Many of these features are enabled by default, so IT departments don’t need to 
perform extensive configurations. And key security features like device encryption  
are not configurable, so users can’t disable them by mistake. Other features, such as 
Touch ID, enhance the user experience by making it simpler and more intuitive to  
secure the device. 

This document provides details about how security technology and features are 
implemented within the iOS platform. It will also help organizations combine iOS 
platform security technology and features with their own policies and procedures  
to meet their specific security needs. 

This document is organized into the following topic areas: 

• System security: The integrated and secure software and hardware that are the 
platform for iPhone, iPad, and iPod touch. 

• Encryption and data protection: The architecture and design that protects user data  
if the device is lost or stolen, or if an unauthorized person attempts to use or modify it. 

• App security: The systems that enable apps to run securely and without 
compromising platform integrity. 

• Network security: Industry-standard networking protocols that provide secure 
authentication and encryption of data in transmission. 

• Apple Pay: Apple’s implementation of secure payments. 
• Internet services: Apple’s network-based infrastructure for messaging, syncing,  

and backup. 
• Device controls: Methods that prevent unauthorized use of the device and enable  

it to be remotely wiped if lost or stolen. 
• Privacy controls: Capabilities of iOS that can be used to control access to Location 

Services and user data. 
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Security architecture diagram of iOS  
provides a visual overview of the different 
technologies discussed in this document. 
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System Security


System security is designed so that both software and hardware are secure across  
all core components of every iOS device. This includes the boot-up process, software 
updates, and Secure Enclave. This architecture is central to security in iOS, and never  
gets in the way of device usability. 

The tight integration of hardware and software on iOS devices ensures that each 
component of the system is trusted, and validates the system as a whole. From initial  
boot-up to iOS software updates to third-party apps, each step is analyzed and vetted  
to help ensure that the hardware and software are performing optimally together and 
using resources properly. 

Secure boot chain

Each step of the startup process contains components that are cryptographically 
signed by Apple to ensure integrity and that proceed only after verifying the chain of 
trust. This includes the bootloaders, kernel, kernel extensions, and baseband firmware. 

When an iOS device is turned on, its application processor immediately executes code 
from read-only memory known as the Boot ROM. This immutable code, known as the 
hardware root of trust, is laid down during chip fabrication, and is implicitly trusted. 
The Boot ROM code contains the Apple Root CA public key, which is used to verify that 
the Low-Level Bootloader (LLB) is signed by Apple before allowing it to load. This is the 
first step in the chain of trust where each step ensures that the next is signed by Apple. 
When the LLB finishes its tasks, it verifies and runs the next-stage bootloader, iBoot, 
which in turn verifies and runs the iOS kernel. 

This secure boot chain helps ensure that the lowest levels of software are not 
tampered with and allows iOS to run only on validated Apple devices. 

For devices with cellular access, the baseband subsystem also utilizes its own  
similar process of secure booting with signed software and keys verified by the 
baseband processor. 

For devices with an A7 or later A-series processor, the Secure Enclave coprocessor also 
utilizes a secure boot process that ensures its separate software is verified and signed  
by Apple. 

If one step of this boot process is unable to load or verify the next process, startup is 
stopped and the device displays the “Connect to iTunes” screen. This is called recovery 
mode. If the Boot ROM is not able to load or verify LLB, it enters DFU (Device Firmware 
Upgrade) mode. In both cases, the device must be connected to iTunes via USB and 
restored to factory default settings. For more information on manually entering 
recovery mode, see https://support.apple.com/kb/HT1808. 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Entering Device Firmware Upgrade  
(DFU) mode 

Restoring a device after it enters DFU 
mode returns it to a known good state 
with the certainty that only unmodified 
Apple-signed code is present. DFU mode 
can be entered manually: First connect 
the device to a computer using a USB 
cable, then hold down both the Home 
and Sleep/Wake buttons. After 8 seconds, 
release the Sleep/Wake button while 
continuing to hold down the Home 
button. Note: Nothing will be displayed  
on the screen when the device is in  
DFU mode. If the Apple logo appears,  
the Sleep/Wake button was held down 
too long. 

https://support.apple.com/kb/HT1808


System software authorization

Apple regularly releases software updates to address emerging security concerns  
and also provide new features; these updates are provided for all supported devices 
simultaneously. Users receive iOS update notifications on the device and through  
iTunes, and updates are delivered wirelessly, encouraging rapid adoption of the latest 
security fixes. 

The startup process described above helps ensure that only Apple-signed code can be 
installed on a device. To prevent devices from being downgraded to older versions that 
lack the latest security updates, iOS uses a process called System Software Authorization.  
If downgrades were possible, an attacker who gains possession of a device could install  
an older version of iOS and exploit a vulnerability that’s been fixed in the newer version. 

On a device with an A7 or later A-series processor, the Secure Enclave coprocessor  
also utilizes System Software Authorization to ensure the integrity of its software and 
prevent downgrade installations. See “Secure Enclave,” below. 

iOS software updates can be installed using iTunes or over the air (OTA) on the device. 
With iTunes, a full copy of iOS is downloaded and installed. OTA software updates 
download only the components required to complete an update, improving network 
efficiency, rather than downloading the entire OS. Additionally, software updates can  
be cached on a local network server running the caching service on OS X Server so that 
iOS devices do not need to access Apple servers to obtain the necessary update data. 

During an iOS upgrade, iTunes (or the device itself, in the case of OTA software updates) 
connects to the Apple installation authorization server and sends it a list of cryptographic 
measurements for each part of the installation bundle to be installed (for example, LLB, 
iBoot, the kernel, and OS image), a random anti-replay value (nonce), and the device’s 
unique ID (ECID). 

The authorization server checks the presented list of measurements against versions 
for which installation is permitted and, if it finds a match, adds the ECID to the 
measurement and signs the result. The server passes a complete set of signed data  
to the device as part of the upgrade process. Adding the ECID “personalizes” the 
authorization for the requesting device. By authorizing and signing only for known 
measurements, the server ensures that the update takes place exactly as provided  
by Apple. 

The boot-time chain-of-trust evaluation verifies that the signature comes from Apple 
and that the measurement of the item loaded from disk, combined with the device’s 
ECID, matches what was covered by the signature. 

These steps ensure that the authorization is for a specific device and that an old iOS 
version from one device can’t be copied to another. The nonce prevents an attacker 
from saving the server’s response and using it to tamper with a device or otherwise  
alter the system software. 

Secure Enclave

The Secure Enclave is a coprocessor fabricated in the Apple A7 or later A-series processor. 
It utilizes its own secure boot and personalized software update separate from the 
application processor. It provides all cryptographic operations for Data Protection key 
management and maintains the integrity of Data Protection even if the kernel has  
been compromised. 
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The Secure Enclave uses encrypted memory and includes a hardware random number 
generator. Its microkernel is based on the L4 family, with modifications by Apple. 
Communication between the Secure Enclave and the application processor is isolated  
to an interrupt-driven mailbox and shared memory data buffers. 

Each Secure Enclave is provisioned during fabrication with its own UID (Unique ID)  
that is not accessible to other parts of the system and is not known to Apple. When  
the device starts up, an ephemeral key is created, entangled with its UID, and used to 
encrypt the Secure Enclave’s portion of the device’s memory space. 

Additionally, data that is saved to the file system by the Secure Enclave is encrypted  
with a key entangled with the UID and an anti-replay counter. 

The Secure Enclave is responsible for processing fingerprint data from the Touch ID 
sensor, determining if there is a match against registered fingerprints, and then 
enabling access or purchases on behalf of the user. Communication between the 
processor and the Touch ID sensor takes place over a serial peripheral interface  
bus. The processor forwards the data to the Secure Enclave but cannot read it. It’s 
encrypted and authenticated with a session key that is negotiated using the device’s 
shared key that is provisioned for the Touch ID sensor and the Secure Enclave. The 
session key exchange uses AES key wrapping with both sides providing a random  
key that establishes the session key and uses AES-CCM transport encryption. 

Touch ID

Touch ID is the fingerprint sensing system that makes secure access to the device faster 
and easier. This technology reads fingerprint data from any angle and learns more 
about a user’s fingerprint over time, with the sensor continuing to expand the 
fingerprint map as additional overlapping nodes are identified with each use. 

Touch ID makes using a longer, more complex passcode far more practical because 
users won’t have to enter it as frequently. Touch ID also overcomes the inconvenience 
of a passcode-based lock, not by replacing it but by securely providing access to the 
device within thoughtful boundaries and time constraints. 

Touch ID and passcodes 
To use Touch ID, users must set up their device so that a passcode is required to unlock 
it. When Touch ID scans and recognizes an enrolled fingerprint, the device unlocks 
without asking for the device passcode. The passcode can always be used instead of 
Touch ID, and it’s still required under the following circumstances: 

• The device has just been turned on or restarted 
• The device has not been unlocked for more than 48 hours 
• The device has received a remote lock command 
• After five unsuccessful attempts to match a fingerprint 
• When setting up or enrolling new fingers with Touch ID 

When Touch ID is enabled, the device immediately locks when the Sleep/Wake button 
is pressed. With passcode-only security, many users set an unlocking grace period to 
avoid having to enter a passcode each time the device is used. With Touch ID, the 
device locks every time it goes to sleep, and requires a fingerprint—or optionally the 
passcode—at every wake. 
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Touch ID can be trained to recognize up to five different fingers. With one finger 
enrolled, the chance of a random match with someone else is 1 in 50,000. However, 
Touch ID allows only five unsuccessful fingerprint match attempts before the user 
is required to enter a passcode to obtain access.  

Other uses for Touch ID 
Touch ID can also be configured to approve purchases from the iTunes Store, the  
App Store, and the iBooks Store, so users don’t have to enter an Apple ID password. 
When they choose to authorize a purchase, authentication tokens are exchanged 
between the device and the store. The token and cryptographic nonce are held in the 
Secure Enclave. The nonce is signed with a Secure Enclave key shared by all devices  
and the iTunes Store. 

Touch ID can also be used with Apple Pay, Apple’s implementation of secure payments. 
For more information, see the Apple Pay section of this document. 

Additionally, third-party apps can use system-provided APIs to ask the user to 
authenticate using Touch ID or a passcode. The app is only notified as to whether the 
authentication was successful; it cannot access Touch ID or the data associated with the 
enrolled fingerprint. 

Keychain items can also be protected with Touch ID, to be released by the Secured 
Enclave only by a fingerprint match or the device passcode. App developers also  
have APIs to verify that a passcode has been set by the user and therefore able to 
authenticate or unlock keychain items using Touch ID. 

Touch ID security 
The fingerprint sensor is active only when the capacitive steel ring that surrounds the 
Home button detects the touch of a finger, which triggers the advanced imaging array 
to scan the finger and send the scan to the Secure Enclave. 

The 88-by-88-pixel, 500-ppi raster scan is temporarily stored in encrypted memory 
within the Secure Enclave while being vectorized for analysis, and then it’s discarded. 
The analysis utilizes subdermal ridge flow angle mapping, which is a lossy process  
that discards minutia data that would be required to reconstruct the user’s actual 
fingerprint. The resulting map of nodes is stored without any identity information in  
an encrypted format that can only be read by the Secure Enclave, and is never sent  
to Apple or backed up to iCloud or iTunes. 

How Touch ID unlocks an iOS device 
If Touch ID is turned off, when a device locks, the keys for Data Protection class 
Complete, which are held in the Secure Enclave, are discarded. The files and keychain 
items in that class are inaccessible until the user unlocks the device by entering his 
or her passcode. 

With Touch ID turned on, the keys are not discarded when the device locks; instead, 
they’re wrapped with a key that is given to the Touch ID subsystem inside the Secure 
Enclave. When a user attempts to unlock the device, if Touch ID recognizes the user’s 
fingerprint, it provides the key for unwrapping the Data Protection keys, and the  
device is unlocked. This process provides additional protection by requiring the Data 
Protection and Touch ID subsystems to cooperate in order to unlock the device. 

The keys needed for Touch ID to unlock the device are lost if the device reboots  
and are discarded by the Secure Enclave after 48 hours or five failed Touch ID 
recognition attempts. 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Encryption and Data Protection


The secure boot chain, code signing, and runtime process security all help to ensure that 
only trusted code and apps can run on a device. iOS has additional encryption and data 
protection features to safeguard user data, even in cases where other parts of the security 
infrastructure have been compromised (for example, on a device with unauthorized 
modifications). This provides important benefits for both users and IT administrators, 
protecting personal and corporate information at all times and providing methods for 
instant and complete remote wipe in the case of device theft or loss. 

Hardware security features

On mobile devices, speed and power efficiency are critical. Cryptographic operations  
are complex and can introduce performance or battery life problems if not designed 
and implemented with these priorities in mind. 

Every iOS device has a dedicated AES 256 crypto engine built into the DMA path 
between the flash storage and main system memory, making file encryption  
highly efficient. 

The device’s unique ID (UID) and a device group ID (GID) are AES 256-bit keys fused 
(UID) or compiled (GID) into the application processor and Secure Enclave during 
manufacturing. No software or firmware can read them directly; they can see only the 
results of encryption or decryption operations performed by dedicated AES engines 
implemented in silicon using the UID or GID as a key. Additionally, the Secure Enclave’s 
UID and GID can only be used by the AES engine dedicated to the Secure Enclave. The 
UIDs are unique to each device and are not recorded by Apple or any of its suppliers. 
The GIDs are common to all processors in a class of devices (for example, all devices 
using the Apple A8 processor), and are used for non security-critical tasks such as when 
delivering system software during installation and restore. Integrating these keys into 
the silicon helps prevent them from being tampered with or bypassed, or accessed 
outside the AES engine. The UIDs and GIDs are also not available via JTAG or other 
debugging interfaces. 

The UID allows data to be cryptographically tied to a particular device. For example, the 
key hierarchy protecting the file system includes the UID, so if the memory chips are 
physically moved from one device to another, the files are inaccessible. The UID is not 
related to any other identifier on the device. 

Apart from the UID and GID, all other cryptographic keys are created by the system’s 
random number generator (RNG) using an algorithm based on CTR_DRBG. System 
entropy is generated from timing variations during boot, and additionally from 
interrupt timing once the device has booted. Keys generated inside the Secure Enclave 
use its true hardware random number generator based on multiple ring oscillators post 
processed with CTR_DRBG. 

Securely erasing saved keys is just as important as generating them. It’s especially 
challenging to do so on flash storage, where wear-leveling might mean multiple copies 
of data need to be erased. To address this issue, iOS devices include a feature dedicated 
to secure data erasure called Effaceable Storage. This feature accesses the underlying 
storage technology (for example, NAND) to directly address and erase a small number  
of blocks at a very low level. 
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Erase all content and settings 

The “Erase all content and settings” option in 
Settings obliterates all the keys in Effaceable 
Storage, rendering all user data on the 
device cryptographically inaccessible. 
Therefore, it’s an ideal way to be sure all 
personal information is removed from a 
device before giving it to somebody else or 
returning it for service. Important: Do not use 
the “Erase all content and settings” option 
until the device has been backed up, as 
there is no way to recover the erased data.



File Data Protection

In addition to the hardware encryption features built into iOS devices, Apple uses a 
technology called Data Protection to further protect data stored in flash memory on 
the device. Data Protection allows the device to respond to common events such as 
incoming phone calls, but also enables a high level of encryption for user data. Key 
system apps, such as Messages, Mail, Calendar, Contacts, Photos, and Health data values 
use Data Protection by default, and third-party apps installed on iOS 7 or later receive 
this protection automatically. 

Data Protection is implemented by constructing and managing a hierarchy of keys,  
and builds on the hardware encryption technologies built into each iOS device. Data 
Protection is controlled on a per-file basis by assigning each file to a class; accessibility 
is determined by whether the class keys have been unlocked. 

Architecture overview 
Every time a file on the data partition is created, Data Protection creates a new 256-bit 
key (the “per-file” key) and gives it to the hardware AES engine, which uses the key to 
encrypt the file as it is written to flash memory using AES CBC mode. The initialization 
vector (IV) is calculated with the block offset into the file, encrypted with the SHA-1 
hash of the per-file key. 

The per-file key is wrapped with one of several class keys, depending on the circumstances 
under which the file should be accessible. Like all other wrappings, this is performed 
using NIST AES key wrapping, per RFC 3394. The wrapped per-file key is stored in the 
file’s metadata. 

When a file is opened, its metadata is decrypted with the file system key, revealing  
the wrapped per-file key and a notation on which class protects it. The per-file key 
is unwrapped with the class key, then supplied to the hardware AES engine, which 
decrypts the file as it is read from flash memory. 

The metadata of all files in the file system is encrypted with a random key, which is 
created when iOS is first installed or when the device is wiped by a user. The file system 
key is stored in Effaceable Storage. Since it’s stored on the device, this key is not used  
to maintain the confidentiality of data; instead, it’s designed to be quickly erased on 
demand (by the user, with the “Erase all content and settings” option, or by a user or 
administrator issuing a remote wipe command from a mobile device management 
(MDM) server, Exchange ActiveSync, or iCloud). Erasing the key in this manner renders  
all files cryptographically inaccessible. 

The content of a file is encrypted with a per-file key, which is wrapped with a class key 
and stored in a file’s metadata, which is in turn encrypted with the file system key. The 
class key is protected with the hardware UID and, for some classes, the user’s passcode. 
This hierarchy provides both flexibility and performance. For example, changing a file’s 
class only requires rewrapping its per-file key, and a change of passcode just rewraps  
the class key. 
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Passcodes

By setting up a device passcode, the user automatically enables Data Protection.  
iOS supports four-digit and arbitrary-length alphanumeric passcodes. In addition  
to unlocking the device, a passcode provides entropy for certain encryption keys.  
This means an attacker in possession of a device can’t get access to data in specific 
protection classes without the passcode. 

The passcode is entangled with the device’s UID, so brute-force attempts must  
be performed on the device under attack. A large iteration count is used to make 
 each attempt slower. The iteration count is calibrated so that one attempt takes 
approximately 80 milliseconds. This means it would take more than 5½ years to try  
all combinations of a six-character alphanumeric passcode with lowercase letters  
and numbers. 

The stronger the user passcode is, the stronger the encryption key becomes. Touch ID 
can be used to enhance this equation by enabling the user to establish a much 
stronger passcode than would otherwise be practical. This increases the effective 
amount of entropy protecting the encryption keys used for Data Protection, without 
adversely affecting the user experience of unlocking an iOS device multiple times 
throughout the day. 

To further discourage brute-force passcode attacks, the iOS interface enforces escalating 
time delays after the entry of an invalid passcode at the Lock screen. Users can choose 
to have the device automatically wiped if the passcode is entered incorrectly after 10 
consecutive attempts. This setting is also available as an administrative policy through 
mobile device management (MDM) and Exchange ActiveSync, and can be set to a  
lower threshold. 

On a device with an A7 or later A-series processor, the key operations are performed  
by the Secure Enclave, which also enforces a 5-second delay between repeated failed 
unlocking requests. This provides a governor against brute-force attacks in addition to 
safeguards enforced by iOS. 

Data Protection classes

When a new file is created on an iOS device, it’s assigned a class by the app that creates 
it. Each class uses different policies to determine when the data is accessible. The basic 
classes and policies are described in the following sections. 

Complete Protection 
(NSFileProtectionComplete): The class key is protected with a key derived 
from the user passcode and the device UID. Shortly after the user locks a device (10 
seconds, if the Require Password setting is Immediately), the decrypted class key is 
discarded, rendering all data in this class inaccessible until the user enters the passcode 
again or unlocks the device using Touch ID. 

Protected Unless Open 
(NSFileProtectionCompleteUnlessOpen): Some files may need to be  
written while the device is locked. A good example of this is a mail attachment 
downloading in the background. This behavior is achieved by using asymmetric elliptic 
curve cryptography (ECDH over Curve25519). The usual per-file key is protected by 
a key derived using One-Pass Diffie-Hellman Key Agreement as described in NIST SP 
800-56A. 
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Passcode considerations 

If a long password that contains only 
numbers is entered, a numeric keypad is 
displayed at the Lock screen instead  
of the full keyboard. A longer numeric 
passcode may be easier to enter than a 
shorter alphanumeric passcode, while 
providing similar security.



The ephemeral public key for the agreement is stored alongside the wrapped per  
file key. The KDF is Concatenation Key Derivation Function (Approved Alternative 1)  
as described in 5.8.1 of NIST SP 800-56A. AlgorithmID is omitted. PartyUInfo and 
PartyVInfo are the ephemeral and static public keys, respectively. SHA-256 is used as 
the hashing function. As soon as the file is closed, the per-file key is wiped from 
memory. To open the file again, the shared secret is re-created using the Protected 
Unless Open class’s private key and the file’s ephemeral public key; its hash is used  
to unwrap the per-file key, which is then used to decrypt the file. 

Protected Until First User Authentication 
(NSFileProtectionCompleteUntilFirstUserAuthentication): 
This class behaves in the same way as Complete Protection, except that the 
decrypted class key is not removed from memory when the device is locked. The 
protection in this class has similar properties to desktop full-volume encryption,  
and protects data from attacks that involve a reboot. This is the default class for  
all third-party app data not otherwise assigned to a Data Protection class. 

No Protection 
(NSFileProtectionNone): This class key is protected only with the UID, and is 
kept in Effaceable Storage. Since all the keys needed to decrypt files in this class are 
stored on the device, the encryption only affords the benefit of fast remote wipe. If a 
file is not assigned a Data Protection class, it is still stored in encrypted form (as is all 
data on an iOS device). 

Keychain data protection

Many apps need to handle passwords and other short but sensitive bits of data, such  
as keys and login tokens. The iOS keychain provides a secure way to store these items. 

The keychain is implemented as a SQLite database stored on the file system. There is 
only one database; the securityd daemon determines which keychain items each 
process or app can access. Keychain access APIs result in calls to the daemon, which 
queries the app’s “keychain-access-groups” and the “application-identifier” entitlement. 
Rather than limiting access to a single process, access groups allow keychain items to 
be shared between apps. 

Keychain items can only be shared between apps from the same developer. This is 
managed by requiring third-party apps to use access groups with a prefix allocated to 
them through the iOS Developer Program, or in iOS 8, via application groups. The prefix 
requirement and application group uniqueness are enforced through code signing, 
Provisioning Profiles, and the iOS Developer Program. 

Keychain data is protected using a class structure similar to the one used in file Data 
Protection. These classes have behaviors equivalent to file Data Protection classes, but 
use distinct keys and are part of APIs that are named differently. 

Availability File Data Protection Keychain Data Protection                                                                            

When unlocked NSFileProtectionComplete kSecAttrAccessibleWhenUnlocked                                                         

While locked NSFileProtectionCompleteUnlessOpen N/A                                          

After first unlock NSFileProtectionCompleteUntilFirstUserAuthentication kSecAttrAccessibleAfterFirstUnlock         

Always NSFileProtectionNone kSecAttrAccessibleAlways                                                                               

Passcode N/A kSecAttrAccessible-                                                                                                          
enabled  WhenPasscodeSetThisDeviceOnly                                                                                                                  
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Components of a keychain item 

Along with the access group, each 
keychain item contains administrative 
metadata (such as “created” and “last 
updated” timestamps). 

It also contains SHA-1 hashes of the 
attributes used to query for the item (such 
as the account and server name) to allow 
lookup without decrypting each item. And 
finally, it contains the encryption data, 
which includes the following: 

• Version number 

• Access control list (ACL) data 

• Value indicating which protection class 
the item is in 

• Per-item key wrapped with the 
protection class key 

• Dictionary of attributes describing  
the item (as passed to SecItemAdd), 
encoded as a binary plist and encrypted 
with the per-item key 

The encryption is AES 128 in GCM  
(Galois/Counter Mode); the access group is 
included in the attributes and protected 
by the GMAC tag calculated during 
encryption.



Apps that utilize background refresh services can use 
kSecAttrAccessibleAfterFirstUnlock for keychain items that need to be 
accessed during background updates. 

The class kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly is 
available only when the device is configured with a passcode. Items in this class exist 
only in the system keybag; they do not sync to iCloud Keychain, are not backed up, and 
are not included in escrow keybags. If the passcode is removed or reset, the items are 
rendered useless by discarding the class keys. 

Other keychain classes have a “This device only” counterpart, which is always protected 
with the UID when being copied from the device during a backup, rendering it useless 
if restored to a different device. 

Apple has carefully balanced security and usability by choosing keychain classes that 
depend on the type of information being secured and when it’s needed by iOS. For 
example, a VPN certificate must always be available so the device keeps a continuous 
connection, but it’s classified as “non-migratory,” so it can’t be moved to another device. 

For keychain items created by iOS, the following class protections are enforced: 

Item   Accessible                                                                                                               

Wi-Fi passwords   After first unlock                                                                                                  

Mail accounts   After first unlock                                                                                                      

Exchange accounts   After first unlock                                                                                            

VPN passwords   After first unlock                                                                                                   

LDAP, CalDAV, CardDAV  After first unlock                                                                                       

Social network account tokens  After first unlock                                                                          

Handoff advertisement encryption keys  After first unlock                                                           

iCloud token   After first unlock                                                                                                       

Home sharing password  When unlocked                                                                                     

Find My iPhone token   Always                                                                                        

Voicemail   Always                                                                                                             

iTunes backup   When unlocked, non-migratory                                                                                                     

Safari passwords   When unlocked                                                                                                 

VPN certificates   Always, non-migratory                                                                                                   

Bluetooth® keys   Always, non-migratory                                                                                                  

Apple Push Notification service token  Always, non-migratory                                                              

iCloud certificates and private key  Always, non-migratory                                                                     

iMessage keys   Always, non-migratory                                                                                                     

Certificates and private keys installed by Configuration Profile Always, non-migratory    

SIM PIN   Always, non-migratory                                                                                                                

Keychain access control  
Keychains can use access control lists (ACLs) to set policies for accessibility and 
authentication requirements. Items can establish conditions that require user presence 
by specifying that they can’t be accessed unless authenticated using Touch ID or by 
entering the device’s passcode. ACLs are evaluated inside the Secure Enclave and are 
released to the kernel only if their specified constraints are met. 
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Access to Safari saved passwords

iOS apps can interact with keychain items saved by Safari for password autofill using 
the following two APIs: 

• SecRequestSharedWebCredential

• SecAddSharedWebCredential 

Access will be granted only if both the app developer and website administrator have 
given their approval, and the user has given consent. App developers express their 
intent to access Safari saved passwords by including an entitlement in their app. The 
entitlement lists the fully qualified domain names of associated websites. The websites 
must place a CMS signed file on their server listing the unique app identifiers of apps 
they’ve approved. When an app with the com.apple.developer.associated-domains 
entitlement is installed, iOS 8 makes a TLS request to each listed website, requesting 
the file /apple-app-site-association. If the signature is from an identity valid for the 
domain and trusted by iOS, and the file lists the app identifier of the app being installed, 
then iOS marks the website and app as having a trusted relationship. Only with a 
trusted relationship will calls to these two APIs result in a prompt to the user, who must 
agree before any passwords are released to the app, or are updated or deleted. 

Keybags

The keys for both file and keychain Data Protection classes are collected and  
managed in keybags. iOS uses the following four keybags: system, backup, escrow,  
and iCloud Backup. 

System keybag is where the wrapped class keys used in normal operation  
of the device are stored. For example, when a passcode is entered, the 
NSFileProtectionComplete key is loaded from the system keybag and 
unwrapped. It is a binary plist stored in the No Protection class, but whose contents  
are encrypted with a key held in Effaceable Storage. In order to give forward security  
to keybags, this key is wiped and regenerated each time a user changes their passcode. 
The AppleKeyStore kernel extension manages the system keybag, and can  
be queried regarding a device’s lock state. It reports that the device is unlocked  
only if all the class keys in the system keybag are accessible, and have been  
unwrapped successfully. 

Backup keybag is created when an encrypted backup is made by iTunes and stored on 
the computer to which the device is backed up. A new keybag is created with a new 
set of keys, and the backed-up data is re-encrypted to these new keys. As explained 
earlier, non-migratory keychain items remain wrapped with the UID-derived key, 
allowing them to be restored to the device they were originally backed up from, but 
rendering them inaccessible on a different device. 

The keybag is protected with the password set in iTunes, run through 10,000 iterations 
of PBKDF2. Despite this large iteration count, there’s no tie to a specific device, and 
therefore a brute-force attack parallelized across many computers could theoretically  
be attempted on the backup keybag. This threat can be mitigated with a sufficiently 
strong password. 

If a user chooses not to encrypt an iTunes backup, the backup files are not encrypted 
regardless of their Data Protection class, but the keychain remains protected with a  
UID-derived key. This is why keychain items migrate to a new device only if a backup 
password is set. 
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