
DevOOPS Attacks

➔ Tokens in logs/dumps/configs/code snippets
➔ Pastebin, stackoverflow and similar sites
➔ Github, Bitbucket (gist, code, builds)
➔ Slack tokens in Github
➔ AWS credentials in dot files



DevOOPS Attacks

➔ Developer, Ops laptop lost (or) stolen
➔ Always admin on their systems
➔ Root key is king
➔ Security patches not updated



DevOOPS Attacks

➔ Older version software and applications
➔ Server hardening not done
➔ No standard AMI for infrastructure
➔ Container images available to public
➔ Hard coded keys in code
➔ Docker == root



DevOOPS Attacks

➔ Exposed Credentials (stolen or lost machine, commits with dot files and 
stack overflow)

➔ Vulnerable apps (app with security issues)
➔ Misconfiguration (lack of monitoring, iam policies, hardening)
➔ Insecurely configured services (s3 buckets, RDS)



DevOOPS Attacks Solution

➔ Move away from public github, pastebin (Gitlab, Gogs, Phabricator)
➔ Use SSH Keys only, Enable 2FA
➔ Security Audits
➔ Gitrob, Git Monitor
➔ Dumpmon, pastemon
➔ Osquery, OSSEC, ELK
➔ Patch Management



DevOOPS Attacks Solution

➔ Secure Authentication & Authorization 
➔ Logging & Monitoring 
➔ Private registry (docker registry, gcr, quay)
➔ Image scanning (clair, docker scan)
➔ rootless containers
➔ Isolation and segmentation (apparmor, seccomp etc)



Insecurity Scenarios



App insecurity scenario

➔ App has a Local File Inclusion bug

➔ The AWS root credentials are being used

➔ They are stored in a world readable file on the server

➔ Attacker reads the credentials and starts multiple large instances to mine 
bitcoins

➔ Victim saddled with a massive bill at the end of the month



Infra insecurity scenario

➔ MySQL Production database is listening on external port

➔ Developers work directly on production database and require SQL 
Management Software

➔ They log in using the root user of MySQL Database server and a simple 
password

➔ Attacker runs a brute force script and cracks the password, gains full 
access to the database



Data insecurity scenario

➔ Database is getting backed up regularly

➔ Due to performance reasons, database wasn’t encrypted when initial 
backups were done

➔ Dev team moves to newer type SSDs and doesn’t decommission older 
HDDs

➔ Attacker finds older HDD, does forensics for data recovery and sell the 
data for profit.



DevSecOps Playbook



Checklist

➔ Collaboration is key principle, make sure all teams involved throughout 
project life cycle.

➔ Now infrastructure is codified and version controlled. Add security checks 
into the code itself, and make some best practice checklist for your 
organisations

➔ Always add security monitoring & logging for each infrastructure, 
application you have



Checklist

➔ Once the code is committed to version control system, integrate your 
security checks and scanners using CI/CD

➔ Build centralised repositories and registries and look for security issues

➔ Document everything, It’s really important to know what’s happening

➔ Automate as much as possible, trust computers rather our memory



Checklist

➔ Secure by default, encrypt everything possible.

➔ SSH with keys, no root. HTTPS every where

➔ Secure storage, backups 

➔ Perform red teaming activities

➔ Measure with the samples always, and take feedback from all teams and 
keep improve the process



Checklist

➔ DevSecOps is not one person job. Build security champions, gamification 
is the key for making more security champions in your organisations

➔ Build devsecops mindset and improve the culture, it’s one of the best hack 
to getting involved.

➔ Follow like minded people and contribute to the open source community




