Session-2

CR Equation: The Complex-valued function $w=f(z)=u+i v$ is analytic in a domain D iff C-R equations $u_{x}=v_{y} \&{ }^{u_{y}=-v_{x}}$ are satisfied, assuming all partial derivatives $u_{x}, u_{y}, v_{x}, \& v_{y}$ are continuous in D.

Cauchy-Riemann Equations in polar form

Let $z=r(\cos \theta+i \sin \theta)=r e^{i \theta} \quad($ where $r>0)$
\& Let $w=f(z)=f\left(r e^{i \theta}\right)=u+i v$
ie. $\quad u(r, \theta)+i v(r, \theta)=f\left(r e^{i \theta}\right)$

$$
\Rightarrow u_{\theta}=-r v_{r} \text { or } \quad v_{r}=-\frac{1}{r} u_{\theta} \quad \text { (7) Again } v_{\theta}=r u_{r}
$$

or $\quad u_{r}=\frac{1}{r} v_{\theta}$
are called C-R equations in polar form.

Laplace's Equation

If $f(z)=u(x, y)+i v(x, y)$ is analytic in a domain D, then ${ }^{u \& v}$ satisfy Laplace's equation.
i.e. $\quad \nabla^{2} u=u_{x x}+u_{y y}=0$
\& $\quad \nabla^{2} v=v_{x x}+v_{y y}=0$
respectively in D and both have continuous 2 nd order partial derivative in D.

Example: $f(z)=z+\frac{1}{z}$ is analytic ?
Ans:Let $z=r(\cos \theta+i \sin \theta)=r e^{i \theta}$ and $\frac{1}{z}=\frac{1}{r e^{i \theta}}=$ $\frac{1}{r} e^{-i \theta}=\frac{1}{r}(\cos \theta-i \sin \theta)$
Now $f(z)=z+\frac{1}{z}=r(\cos \theta+i \sin \theta)+\frac{1}{r}(\cos \theta-i \sin \theta)$

$$
=\left(r+\frac{1}{r}\right) \cos \theta+i\left(r-\frac{1}{r}\right) \sin \theta
$$

But we know that $f(z)=w=u+i v$
i.e $u=\left(r+\frac{1}{r}\right) \cos \theta$ and $v=\left(r-\frac{1}{r}\right) \sin \theta$

$$
\begin{gathered}
\frac{\partial u}{\partial r}=\left(1-\frac{1}{r^{2}}\right) \cos \theta \text { and } \frac{\partial v}{\partial r}=\left(1+\frac{1}{r^{2}}\right) \sin \theta \\
\frac{\partial u}{\partial \theta}=-\left(r+\frac{1}{r}\right) \sin \theta \text { and } \frac{\partial v}{\partial \theta}=\left(r-\frac{1}{r}\right) \cos \theta \\
\Rightarrow \frac{1}{r} \frac{\partial v}{\partial \theta}=\left(1-\frac{1}{r^{2}}\right) \cos \theta=\frac{\partial u}{\partial r}
\end{gathered}
$$

Again $\frac{1}{r} \frac{\partial u}{\partial \theta}=-\left(1+\frac{1}{r^{2}}\right) \sin \theta=-\frac{\partial v}{\partial r}$ hence it satisfy the CR equation.

Therefore the given complex function is analytic function.

Example-2

Find the Laplacian form of the following function $u=\ln |z|$
Ans: Given that $u=\ln |z|=\ln \sqrt{x^{2}+y^{2}}($ where $z=x+i y)$

$$
u=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)
$$

$$
\begin{aligned}
& u_{x}=\frac{x}{x^{2}+y^{2}} \quad \text { and } u_{y}=\frac{y}{x^{2}+y^{2}} \\
& u_{x x}=\frac{\left(x^{2}+y^{2}\right)-x .2 x}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& u_{y y}=\frac{\left(x^{2}+y^{2}\right)-y .2 y}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

Therefore $u_{x x}+u_{y y}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=0$.
Hence u satisfy the Laplacian equation. Therefore u is Harmonic Function.

Harmonic function:

The function $u(x, y)$ is said to be harmonic if it satisfies Laplace's equation i.e. $\nabla^{2} u=u_{x x}+u_{y y}=0$.

Theorem 2: If $f(z)=u(x, y)+i v(x, y)$ is an analytic function then its real and imaginary parts i.e. ${ }^{u \& v}$ are harmonic.

Conjugate Harmonic function: If two harmonic functions $u \& v$ satisfy Cauchy-Riemann equations in a region S, then they are the real and imaginary parts of an analytic function ${ }^{f(z)}$ in S, i.e $f(z)=u+i v$ is analytic in S.

So, v is called the 'conjugate harmonic function' of u in the region S. It is true that a harmonic conjugate, when it exists, is unique except for an additive constant

Note: If u is harmonic then v is called conjugate harmonic of u and v is harmonic then u is called conjugate harmonic of v.

Example-3: Determine whether the following function is harmonic then find their conjugate harmonic function.

1. $u=\ln |z|$.
2. $u=x^{2}+y^{2}$
$3 . v=\operatorname{Arg}(z)$

Ans: Given that $u=\ln |z|=\ln \sqrt{x^{2}+y^{2}}($ where $z=x+i y)$

$$
u=\frac{1}{2} \ln \sqrt{x^{2}+y^{2}}
$$

$$
\begin{aligned}
& u_{x}=\frac{x}{x^{2}+y^{2}} \quad \text { and } u_{y}=\frac{y}{x^{2}+y^{2}} \\
& u_{x x}=\frac{\left(x^{2}+y^{2}\right)-x \cdot 2 x}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& u_{y y}=\frac{\left(x^{2}+y^{2}\right)-y \cdot 2 y}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

Therefore $u_{x x}+u_{y y}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=0$.
Hence u satisfy the Laplacian equation. Therefore u is Harmonic Function.

We know that $u_{x}=v_{y}$ and $u_{y}=-v_{x}(C R-$ Equation $)$

$$
\begin{align*}
& u_{x}=v_{y}=\frac{x}{x^{2}+y^{2}} \\
& \frac{\partial v}{\partial y}=\frac{x}{x^{2}+y^{2}} \ldots \tag{1}
\end{align*}
$$

Integrating bothsides of (1) partially w.r.t.y keeping x constant, we obtain

$$
v=\int \frac{x}{x^{2}+y^{2}} d y+h(x)
$$

$v=\tan ^{-1}\left(\frac{y}{x}\right)+h(x)$
Differentiating equation (2) partially w.r.t. x we get

$$
\begin{equation*}
\frac{\partial v}{\partial x}=\frac{1}{1+\left(\frac{y^{2}}{x^{2}}\right)} \cdot\left(\frac{-y}{x^{2}}\right)+h^{\prime}(x) \tag{3}
\end{equation*}
$$

$\Rightarrow \frac{-y}{x^{2}+y^{2}}+h^{\prime}(x)$
Again from second CR- equation $u_{y}=-v_{x} \Rightarrow v_{x}=-u_{y}$

$$
\begin{equation*}
v_{x}=\frac{-y}{x^{2}+y^{2}} \tag{4}
\end{equation*}
$$

Equating (3) and (4) we get $\frac{-y}{x^{2}+y^{2}}+h^{\prime}(x)=\frac{-y}{x^{2}+y^{2}}$
i.e $h^{\prime}(x)=0$

Again integrate both sides we get $h(x)=0$
Put the value of $h(x)$ value in equation (2) we get the required conjugate function.

Therefore

$$
v(x, y)=\tan ^{-1}\left(\frac{y}{x}\right) \text { (Ans) }
$$

Exercise -1
Are the following functions harmonic? If your answer is yes, find a corresponding analytic function
$f(z)=u(x, y)+i v(x, y)$.
12. $u=x y$
14. $v=-y /\left(x^{2}+y^{2}\right)$
15. $u=\ln |z|$
16. $v=\ln |z|$
18. $u=1 /\left(x^{2}+y^{2}\right)$
17. $u=x^{3}-3 x y^{2}$
18. $u=1\left(x^{2}+y^{2}\right)$
20. $u=\cos x \cosh y$
19. $v=\left(x^{2}-y^{2}\right)^{2}$
21. $u=e^{-x} \sin 2 y$

