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Laurent’s Series
If a single valued function f(z) is analytic inside and on the boundaries of a ring shaped region

(annulus) S bounded by two concentric circles C; and C; of radii r,and r, (I; >r,) respectively having
centre at a, then for all z is S,
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By introducing a cross AB the ring shaped region S, bounded by two circles C; and C, was converted into
a simply connected region, bounded by a simple closed curve say D.
Let z be an interior point and t be a boundary point of the simple connected region.

". By Cauchy’s integral formula, we have
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where C, and C, are traversed in anticlock-wise direction.

For the 1% integral in (5), t lies on C;
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and integrating term by term w.r.t. t along the circle C,, we obtain
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Multiplying both sides by —=+ o
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Multiplying both sides by ( ) and integrating term by term w.r.t. t along the circle C, , we obtain
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Substituting the values from (6) and (8) in (5), we obtain;

(=Y A(z-a)+>B,z-2)" (10)
n=0 n=1

where A, and B, aregivenin (7) and (9).

Note:

(1) In the Laurent expansion (10) of a complex valued function f(z) , the first part Z A (z-a)" is
n=0

called the analytic-part of Laurent’s series which is similar to the Taylor’s series of the function and the
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remainder Z B,(z—a)™" is known as the principal part of the Laurent’s series. The second

n=1
summation is of chief interest, since it contains the singularity.
(2) In the statement of Laurent’s series,
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(3) In case f(z) is analytic inside C,(or inside C,), then B =0 and
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(4) If C isany simple closed curve lying in the ring shaped region S and enclosing the circle C,, then
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.. Laurent’s series can be expressed as
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(5) The process of finding the coefficient A by complex integration is complicated.
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and Laurent’s series reduces to Taylor’s series.

In practice, we expand the function f(z) by binomial theorem.



