Session_10

Laurent's Series

If a single valued function $f(z)$ is analytic inside and on the boundaries of a ring shaped region (annulus) S bounded by two concentric circles C_{1} and C_{2} of radii r_{1} and $r_{2}\left(r_{1}>r_{2}\right)$ respectively having centre at a, then for all z is S,

$$
f(z)=A_{0}+A_{1}(z-a)+A_{2}(z-a)^{2}+\cdots+B_{1}(z-a)^{-1}+B_{2}(z-a)^{-2}+\cdots
$$

or, $f(z)=\sum_{n=0}^{\infty} A_{n}(z-a)^{n}+\sum_{n=1}^{\infty} B_{n}(z-a)^{-n}$
where, $\quad A_{n}=\frac{1}{2 \pi i} \int_{C_{1}} \frac{f(t)}{(t-a)^{n+1}} d t ; n=0,1,2, \cdots$
and $B_{n}=\frac{1}{2 \pi i} \oint_{C_{2}} \frac{f(t)}{(t-a)^{-n+1}} d t ; n=1,2,3 \cdots$

Proof:

By introducing a cross AB the ring shaped region S, bounded by two circles C_{1} and C_{2} was converted into a simply connected region, bounded by a simple closed curve say D.
Let z be an interior point and t be a boundary point of the simple connected region.
\therefore By Cauchy's integral formula, we have

$$
\begin{align*}
& f(z)=\frac{1}{2 \pi i} \oint_{D} \frac{f(t)}{t-z} d t \\
& =\frac{1}{2 \pi i}\left[\prod_{C_{1}} \frac{f(t)}{t-z} d t+\int_{A B} \frac{f(t)}{t-z} d t+\oint_{C_{2}} \frac{f(t)}{t-z} d t+\int_{B A} \frac{f(t)}{t-z} d t\right] \\
& =\frac{1}{2 \pi i}\left[\prod_{C_{1}} \frac{f(t)}{t-z} d t+\oint_{C_{2}} \frac{f(t)}{t-z} d t\right]\binom{\because \text { Integrals along }}{A B \text { and } B A \text { are cancelled out }} \\
& \Rightarrow f(z)=\frac{1}{2 \pi i} \oint_{C_{1}} \frac{f(t)}{t-z} d t-\frac{1}{2 \pi i} \oint_{C_{2}} \frac{f(t)}{t-z} d t \tag{5}
\end{align*}
$$

where C_{1} and C_{2} are traversed in anticlock-wise direction.
For the $1^{\text {st }}$ integral in (5), t lies on C_{1}
$\therefore|z-a|<|t-a|$ i.e., $\left|\frac{z-a}{t-a}\right|<1$

Now, $\frac{1}{t-z}=\frac{1}{(t-a)-(z-a)}=\frac{1}{t-a}\left[1-\frac{z-a}{t-a}\right]^{-1}$

$$
=\frac{1}{t-a}\left[1+\left(\frac{z-a}{t-a}\right)+\left(\frac{z-a}{t-a}\right)^{2}+\ldots\right]\binom{\text { Expanding }}{\text { Binomilly }}
$$

Multiplying both sides by $\frac{f(t)}{2 \pi i}$ and integrating term by term w.r.t. t along the circle C_{1}, we obtain

$$
\begin{aligned}
\frac{1}{2 \pi i} & \oint_{C_{1}} \frac{f(t)}{t-z} d t=\frac{1}{2 \pi i} \oint_{C_{1}} \frac{f(t)}{t-a} d t+\frac{z-a}{2 \pi i} \oint_{C_{1}} \frac{f(t)}{\left(z_{x}-a\right)^{2}} d t \\
& +\frac{(z-a)^{2}}{2 \pi i} \oint_{C_{1}} \frac{f(t)}{(t-a)^{3}} d t+\cdots
\end{aligned}
$$

$=A_{0}+A_{1}(z-a)+A_{2}(z-a)^{2}+\cdots$
$=\sum_{n=0}^{\infty} A_{n}(z-a)^{n}$
where $A_{n}=\frac{1}{2 \pi i} \dot{\oint}_{C_{1}} \frac{f(t)}{(t-a)^{n+1}} d t ; n=0,1,2, \ldots$
For the $2^{\text {nd }}$ integral in (5); t lies on C_{2}
$\therefore|t-a|<|z-a| \quad$ or $\quad\left|\frac{t-a}{z-a}\right|<1$
Now $\frac{1}{t-z}=\frac{1}{(t-a)-(z-a)}=-\frac{1}{z-a}\left[1-\frac{t-a}{z-a}\right]^{-1}$
$\Rightarrow-\frac{1}{t-z}=\frac{1}{z-a}\left[1+\left(\frac{t-a}{z-a}\right)+\left(\frac{t-a}{z-a}\right)^{2}+\cdots\right]\binom{$ Expanding }{ Binomially }
Multiplying both sides by $\frac{f(t)}{2 \pi i}$ and integrating term by term w.r.t. t along the circle C_{2}, we obtain

$$
\begin{align*}
& \begin{array}{l}
-\frac{1}{2 \pi i} \int_{\mathcal{C}_{2}} \frac{f(t)}{t-z} d t=\frac{1}{2 \pi i(z-a)} \mathcal{D}_{C_{2}} f(t) d t \\
\quad+\frac{1}{(z-a)^{2}} \cdot \frac{1}{2 \pi i} \tilde{X}_{C_{2}}(t-a) f(t) d t
\end{array} \\
& \quad+\frac{1}{(z-a)^{3}} \cdot \frac{1}{2 \pi i} \oint_{C_{2}}(t-a)^{2} f(t) d t+\cdots \\
& =B_{1}(z-a)^{-1}+B_{2}(z-a)^{-2}+B_{3}(z-a)^{-3}+\cdots \\
& \quad=\sum_{n=1}^{\infty} B_{n}(z-a)^{-n}
\end{align*}
$$

where, $\quad B_{n}=\frac{1}{2 \pi i} \int_{C_{2}} \frac{f(t)}{(t-a)^{-n+1}} d t ; n=1,2,3, \cdots$

Substituting the values from (6) and (8) in (5), we obtain;
$f(z)=\sum_{n=0}^{\infty} A_{n}(z-a)^{n}+\sum_{n=1}^{\infty} B_{n}(z-a)^{-n}$
where A_{n} and B_{n} are given in (7) and (9).
Note:
(1) In the Laurent expansion (10) of a complex valued function $f(z)$, the first part $\sum_{n=0}^{\infty} A_{n}(z-a)^{n}$ is called the analytic-part of Laurent's series which is similar to the Taylor's series of the function and the remainder $\sum_{n=1}^{\infty} B_{n}(z-a)^{-n}$ is known as the principal part of the Laurent's series. The second summation is of chief interest, since it contains the singularity.
(2) In the statement of Laurent's series,
$A_{n}=\frac{1}{2 \pi i} \int_{C_{1}} \frac{f(t)}{(t-a)^{n+1}} d t \neq \frac{f^{n}(a)}{n!}$, because $f(z)$ is not given to be analytic inside C_{1}
(3) In case $f(z)$ is analytic inside C_{1} (or inside C_{2}), then $B_{n}=0$ and $A_{n}=\frac{1}{2 \pi i} \int_{C_{1}} \frac{f(t)}{(t-a)^{n+1}} d t=\frac{f^{n}(a)}{n!}$ and Laurent's series reduces to Taylor's series.
(4) If C is any simple closed curve lying in the ring shaped region S and enclosing the circle C_{2}, then

$$
\mathbb{T}_{C_{1}} \frac{f(t)}{(t-a)^{n+1}} d t=\mathbb{C}_{C} \frac{f(t)}{(t-a)^{n+1}} d t
$$

and $\quad \int_{C_{2}} \frac{f(t)}{(t-a)^{-n+1}} d t=\int_{C} \frac{f(t)}{(t-a)^{-n+1}} d t$
\therefore Laurent's series can be expressed as
$f(t)=\sum_{n=-\infty}^{\infty} A_{n}(z-a)^{n}$, where $A_{n}=\frac{1}{2 \pi i} \oint_{c} \frac{f(t)}{(t-a)^{n+1}} d t$
(5) The process of finding the coefficient A_{n} by complex integration is complicated.

In practice, we expand the function $f(z)$ by binomial theorem.

