Session_3

Function of a Complex Variable

Let $z=x+i y=(x, y)$ be a complex variable.

If to each value of z in a region D, there we get one or more than one values of $w=f(z)=u(x, y)+i v(x, y)$, then $w=f(z)$ is called a complex function/ complex valued function of z, where $\operatorname{Re} f(z)=u(x, y)$ and $\operatorname{Im} f(z)=v(x, y)$

Limit: A function $f(z)$ is said to have the limit l as $z \rightarrow z_{0}$, written as

$$
\lim _{z \rightarrow z_{0}} f(z)=l
$$

iff for given $\varepsilon>0$, ther exists a $\delta>0$ such that $|f(z)-l|<\varepsilon$, whenever $\left|z-z_{0}\right|<\delta$

Continuity: The function $f(z)$ is said to be continuous at $z=z_{0}$ iff $f\left(z_{0}\right)$ is defined and $\lim _{x \rightarrow z_{0}} f(z)=f\left(z_{0}\right) \cdot f(z)$ is continuous in a domain iff it is continuous at each and every point of this domain.

Derivative: The derivative of a complex valued function $f(z)$ at a point z_{0} is defined by
$\left.f^{\prime}(z)\right|_{z=z_{0}}=f^{\prime}\left(z_{0}\right)=\operatorname{Lt}_{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}$
or, $f^{\prime}\left(z_{0}\right)=\operatorname{Lt}_{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$

Analytic Function

If a single valued function $f(z)$ is defined and differentiable (possesses a unique derivative) at every point of a region S except for a finite number of points then it is said to be an analytic function or a regular function or a holomorphic function or a monogenic function of z in S.

A point where the function ceases to be analytic is called a singular point.
If a function is analytic at each point in the entire finite plane (complex plane), then it is said to be an entire function.

Cauchy-Riemann Equations

The Cauchy - Riemann equations are the most important equations and one of the pillars on which complex analysis rests. They provide a criterion (a test) for the analyticity of a complex function.
$f(z)=f(x, y)=u(x, y)+i v(x, y)$
Let $f(z)$ be a single valued function defined in a region S. In order that $f(z)$ is to be analytic is S or $f^{\prime}(z)$ exists it is necessary that $u \& v$ should satisfy the following pair of equations at every point of S

The equations are:

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad ; \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

Theorem: The Complex-valued function $w=f(z)=u+i v$ is analytic in a domain D iff C-R equations $u_{x}=v_{y} \& u_{y}=-v_{x}$ are satisfied, assuming all partial derivatives $u_{x}, u_{y}, v_{x}, \& v_{y}$ are continuous in D.

