Session_3

Function of a Complex Variable

Let z = x + iy = (x, y) be a complex variable.

If to each value of z in a region D, there we get one or more than one values of w = f(z) = u(x, y) + iv(x, y), then w = f(z) is called a complex function/ complex valued function of z, where $\operatorname{Re} f(z) = u(x, y)$ and $\operatorname{Im} f(z) = v(x, y)$

Limit: A function f(z) is said to have the limit l as $z \rightarrow z_0$, written as

$$\lim_{z \to z_0} f(z) = l$$

iff for given $\varepsilon > 0$, there is a $\delta > 0$ such that $|f(z) - l| < \varepsilon$, whenever $|z - z_0| < \delta$

Continuity: The function f(z) is said to be continuous at $z = z_0$ iff $f(z_0)$ is defined and $\lim_{x \to z_0} f(z) = f(z_0) \cdot f(z)$ is continuous in a domain iff it is continuous at each and every point of this domain.

Derivative: The derivative of a complex valued function f(z) at a point z_0 is defined by

$$f'(z)\Big|_{z=z_0} = f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

or, $f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$

Analytic Function

If a single valued function f(z) is defined and differentiable (possesses a unique derivative) at every point of a region S except for a finite number of points then it is said to be an **analytic function** or a **regular function** or a **holomorphic function** or a **monogenic function** of z in S.

A point where the function ceases to be analytic is called a singular point.

If a function is analytic at each point in the entire finite plane (complex plane), then it is said to be an **entire function.**

Cauchy-Riemann Equations

The Cauchy – Riemann equations are the most important equations and one of the pillars on which complex analysis rests. They provide a criterion (a test) for the analyticity of a complex function.

$$f(z) = f(x, y) = u(x, y) + iv(x, y)$$

Let f(z) be a single valued function defined in a region S. In order that f(z) is to be analytic is S or f'(z) exists it is necessary that u & v should satisfy the following pair of equations at every point of S

The equations are:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \qquad ; \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Theorem: The Complex-valued function w = f(z) = u + iv is analytic in a domain *D* iff C-R equations $u_x = v_y \& u_y = -v_x$ are satisfied, assuming all partial derivatives u_x , u_y , v_x , & v_y are continuous in *D*.