Session_5
Laplace’s Equation, Harmonic and conjugate harmonic Functions

Theorem 1:

If f (Z) =u (X, y)+ iV(X, y) is analytic in a domain D, then U & V satisfy Laplace’s equation.

: 2
lLe. Vu=u,+u, =0
2
& Viv=v, +v, =0
respectively in D and both have continuous 2nd order partial derivative in D.

Proof:
Letgiven f(z)=u(X, y)+iv(X, y) be analytic

= u=v, & u,=-v_ (byC-R equations)
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So u,=v, & U, =-v,

Laplace’s Equation:

Let U(X, y) be a real valued function of two variables possessing 2" order partial derivatives in a

domain D.

If Vu=u, +U,, =0, then this equation is known as Laplace’s equation and U(X, Y)is said to satisfy

the Laplace’s equation.

SO, Viu=u, + u, =0 = V?U satisfies Laplace’s equation

Similarly v, =-u, =V, =-U,

. 2y, _ —
S Viv=v,+v, =-u,+u, =0

2
or Viv=y, +v, =0

=V satisfies Laplace’s equation.

Harmonic function:



The function u(X, y) is said to be harmonic if it satisfies Laplace’s equation i.e. VU =U_ + u, =0.

Theorem 2: If f(z)=u(X,y)+iv(X,Y) isan analytic function then its real and imaginary partsi.e.u & v

are harmonic.
Proof:

Since f(z)=u+Iivis analytic so it satisfies the C-R equations.
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Differentiating (9) partially w.r.t. X &(10) partially w.r.t y; we obtain
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Assuming that partial derivatives of U & vV of 1t and 2" orders exist and are continuous functions of

X & v ; it follows that;
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Adding (3) & (4) we obtain
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By differentiating (9) partially w.r.t. y and (10) partially w.r.t. X and subtracting, we obtain:
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From equation (5) & (6) we concluded that the real and imaginary parts are U & V of an analytic

function f(z) satisfy the Laplace’s equation

Hence U & V are known as Harmonic functions.



