Session_5

Laplace's Equation, Harmonic and conjugate harmonic Functions

Theorem 1:

If $f(z)=u(x, y)+i v(x, y)$ is analytic in a domain D, then $u \& v$ satisfy Laplace's equation.
i.e. $\quad \nabla^{2} u=u_{x x}+u_{y y}=0$
\& $\quad \nabla^{2} v=v_{x x}+v_{y y}=0$
respectively in D and both have continuous 2nd order partial derivative in D.

Proof:

Let given $f(z)=u(x, y)+i v(x, y)$ be analytic
$\Rightarrow \quad u_{x}=v_{y} \quad \& \quad u_{y}=-v_{x} \quad$ (by C-R equations)
So $u_{x x}=v_{y x} \& u_{y y}=-v_{x y}$

Laplace's Equation:

Let $u(x, y)$ be a real valued function of two variables possessing $2^{\text {nd }}$ order partial derivatives in a domain D.

If $\nabla^{2} u=u_{x x}+u_{y y}=0$, then this equation is known as Laplace's equation and $u(x, y)$ is said to satisfy the Laplace's equation.
so, $\quad \nabla^{2} u=u_{x x}+u_{y y}=0 \Rightarrow \nabla^{2} u$ satisfies Laplace's equation

Similarly $v_{x}=-u_{y} \Rightarrow v_{x x}=-u_{y x}$
$\& \quad v_{y}=u_{x} \Rightarrow v_{y y}=u_{x y}$
$\therefore \nabla^{2} v=v_{x x}+v_{y y}=-u_{y x}+u_{x y}=0$
or

$$
\nabla^{2} v=v_{x x}+v_{y y}=0
$$

$\Rightarrow v$ satisfies Laplace's equation.

Harmonic function:

The function $u(x, y)$ is said to be harmonic if it satisfies Laplace's equation i.e. $\nabla^{2} u=u_{x x}+u_{y y}=0$.
Theorem 2: If $f(z)=u(x, y)+i v(x, y)$ is an analytic function then its real and imaginary parts i.e. $u \& v$ are harmonic.

Proof:

Since $f(z)=u+i v$ is analytic so it satisfies the C-R equations.
$\Rightarrow \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$
$\& \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$
Differentiating (9) partially w.r.t. $x \&(10)$ partially w.r.t y; we obtain

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} v}{\partial x \partial y} \tag{11}
\end{equation*}
$$

And $\quad \frac{\partial^{2} u}{\partial y^{2}}=-\frac{\partial^{2} v}{\partial y \partial x}$
Assuming that partial derivatives of $u \& v$ of $1^{\text {st }}$ and $2^{\text {nd }}$ orders exist and are continuous functions of $x \& y$; it follows that;
$\frac{\partial^{2} v}{\partial x \partial y}=\frac{\partial^{2} v}{\partial y \partial x}$

Adding (3) \& (4) we obtain

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \tag{13}
\end{equation*}
$$

By differentiating (9) partially w.r.t. y and (10) partially w.r.t. x and subtracting, we obtain:

$$
\begin{equation*}
\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0 \tag{14}
\end{equation*}
$$

From equation (5) \& (6) we concluded that the real and imaginary parts are $u \& v$ of an analytic function $f(z)$ satisfy the Laplace's equation

Hence $u \& v$ are known as Harmonic functions.

