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Theorem: Cauchy’s Second Integral Theorem/Cauchy’s Integral Formula 

If be a single valued and analytic function throughout a simply connected domain , then for any 

point  in and for every simple closed path that encloses the point . 

  (Counter clockwise)     

Proof: 

The function   is analytic at all points in , except at the point . With the point  as 

centre and radius  draw a small circle  lying inside the curve .  

 

 

 

 

 

 

 

 

Thus   

Now for any part , the equation of  the circle  is  

 where  
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So   

                                         (2) 

In the limiting form as the circle shrinks to the point   i.e. , the integral of (2) reduces to 

 

Thus  (counter clockwise) 
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