Session_8

Theorem: Cauchy's Second Integral Theorem/Cauchy's Integral Formula

If f(z) be a single valued and analytic function throughout a simply connected domain D, then for any point a in D and for every simple closed path C in D that encloses the point a.

$$\oint_{C} \frac{f(z)dz}{z-a} = 2\pi i f(a)$$
 (Counter clockwise)

Proof:

The function $\left(\frac{f(z)}{z-a}\right)$ is analytic at all points in C, except at the point z=a. With the point a as centre and radius r draw a small circle C_1 lying inside the curve C.

Thus
$$\iint_{C} \frac{f(z)}{z-a} dz = \iint_{C_{1}} \frac{f(z)}{z-a} dz$$

Now for any part z on C_1 , the equation of the circle C_1 is

$$|z-a| = r \Rightarrow z-a = re^{i\theta}$$
, where $0 \le \theta \le 2\pi$
 $\Rightarrow z = a + re^{i\theta}$
 $dz = rie^{i\theta} d\theta$

So
$$\prod_{C} \frac{f(z)}{z-a} dz = \int_{0}^{2\pi} \frac{f(a+re^{i\theta})}{re^{i\theta}} ire^{i\theta} d\theta$$
$$= i \int_{0}^{2\pi} f(a+re^{i\theta}) d\theta$$
(2)

In the limiting form as the circle C_1 shrinks to the point a i.e. $r \rightarrow 0$, the integral of (2) reduces to

$$=i\int_{0}^{2\pi}\left[\lim_{r\to 0}f(a+re^{i\theta})\right]d\theta=i\int_{0}^{2\pi}f(a)d\theta=2\pi i f(a)$$

Thus $\iint_{C} \frac{f(z)}{z-z_0} dz = 2\pi i f(a)$ (counter clockwise)