Session_8

Theorem: Cauchy's Second Integral Theorem/Cauchy's Integral Formula

If $f(z)$ be a single valued and analytic function throughout a simply connected domain D, then for any point a in D and for every simple closed path C in D that encloses the point a.
$\int_{C} \frac{f(z) d z}{z-a}=2 \pi i f(a)$ (Counter clockwise)

Proof:

The function $\left(\frac{f(z)}{z-a}\right)$ is analytic at all points in C, except at the point $z=a$. With the point a as centre and radius r draw a small circle C_{1} lying inside the curve C.

Thus $\iint_{C} \frac{f(z)}{z-a} d z=\int_{C_{1}} \frac{f(z)}{z-a} d z$
Now for any part z on C_{1}, the equation of the circle C_{1} is
$|z-a|=r \Rightarrow z-a=r e^{i \theta}$, where $0 \leq \theta \leq 2 \pi$
$\Rightarrow z=a+r e^{i \theta}$
$d z=r i e^{i \theta} d \theta$

So $\int_{C} \frac{f(z)}{z-a} d z=\int_{0}^{2 \pi} \frac{f\left(a+r e^{i \theta}\right)}{r e^{i \theta}} i r e^{i \theta} d \theta$

$$
\begin{equation*}
=i \int_{0}^{2 \pi} f\left(a+r e^{i \theta}\right) d \theta \tag{2}
\end{equation*}
$$

In the limiting form as the circle C_{1} shrinks to the point a i.e. $r \rightarrow 0$, the integral of (2) reduces to
$=i \int_{0}^{2 \pi}\left[\lim _{r \rightarrow 0} f\left(a+r e^{i \theta}\right)\right] d \theta=i \int_{0}^{2 \pi} f(a) d \theta=2 \pi i f(a)$
Thus $\int_{C} \frac{f(z)}{z-z_{0}} d z=2 \pi i f(a)$ (counter clockwise)

