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Theorem: Cauchy’s Second Integral Theorem/Cauchy’s Integral Formula

If f (Z) be a single valued and analytic function throughout a simply connected domain D, then for any

point @ in D and for every simple closed path C in D that encloses the point a.
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Proof:
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The function ( ] is analytic at all points in C, except at the point Z=a . With the point @ as

centre and radius I' draw a small circle C, lying inside the curve C.
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Now for any part z on C_, the equation of the circle C, is
z-aj=r=z-a=re"’, where 0<0<2z

—z=a+re’

dz =rie"dé



:if f(a+re”)do (2)

In the limiting form as the circle C, shrinks to the point & i.e. I — 0, the integral of (2) reduces to
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