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Taylor’s Series of a Complex Function
If the function f (z) is analytic inside a circle C with centre at a, then for all z inside C,

f(2)= f(a)+ f'(a)(z—a)+ (a)(z a)?
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Proof: c
Let z be any point inside the circle C. A circle c C, is drawn with centre at a
1
and radius smaller than that of C such that z is t an interior point of C,

Let ‘t’ be any point on Cy, then
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Expanding R.H.S. by Binomial theorem as < 1; we obtain
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The series in R.H.S. of (2) converges uniformly since |——| <1.
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Now multiplying both sides of (1) by Py and integrating term by term w.r.t t over the circle C;, we
i

obtain
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Since f(t) is analytic on and inside Cj, so by Cauchy integral formula
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*. From (3) we obtain

f(z)="f(a)+(z- a)f(a)+(22a) f"(@)+-- +( a) f(n)(a)

which is the required Taylor’s series for f(z) about z=a.

Maclaurin Series
If a=0, thenthe Taylor s series (4) is reduced to

f(2)= f(0)+zf (0)+ f”(0)+ +—f(0)+

which is known as Maclaurin’s series expansion of f(z).
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