

System Modeling & Control

Presented by

Prof. Amit Kumar Sahoo CUTM, BBSR

Module III Time Response Analysis

INTRODUCTION

The concept of poles and zeros, fundamental to the analysis of and design of control system, simplifies the evaluation of system response.

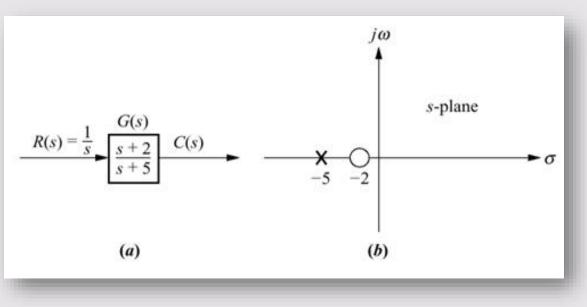
The **poles** of a transfer function are:

- i. Values of the Laplace Transform variables s, that cause the transfer function to become infinite.
- ii. Any roots of the denominator of the transfer function that are common to roots of the numerator.
- The zeros of a transfer function are:
 - i. The values of the Laplace Transform variable s, that cause the transfer function to become zero.
 - ii. Any roots of the numerator of the transfer function that are common to roots of the denominator.

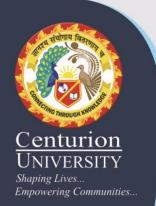
INFLUENCE OF POLES ON TIME RESPONSE

The output response of a system is a sum of

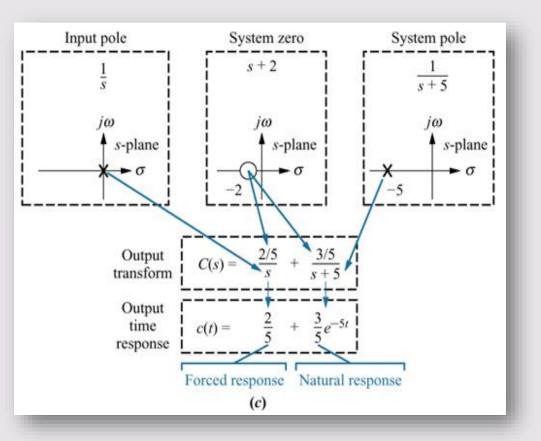
- i. Forced response
- ii. Natural response



- a) System showing an input and an output
- b) Pole-zero plot of the system

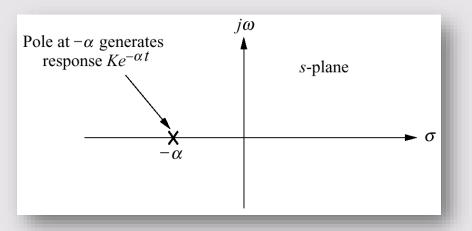


INFLUENCE OF POLES ON TIME RESPONSE

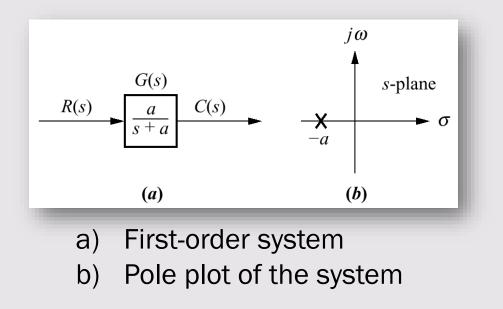


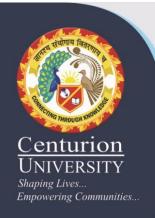
 c) Evolution of a system response. Follow the blue arrows to see the evolution of system component generated by the pole or zero

INFLUENCE OF POLES ON TIME RESPONSE



Effect of a real-axis pole upon transient response

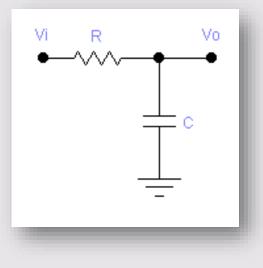




General form:

$$G(s) = \frac{C(s)}{R(s)} = \frac{K}{\tau s + 1}$$

Problem: Derive the transfer function for the following circuit



$$G(s) = \frac{1}{RCs + 1}$$

Transient Response: Gradual change of output from initial to the desired condition.

Block diagram representation:

$$R(s) \longrightarrow \frac{K}{\tau s + 1} \longrightarrow C(s)$$

Where,

- K :Gain
- τ : Time constant

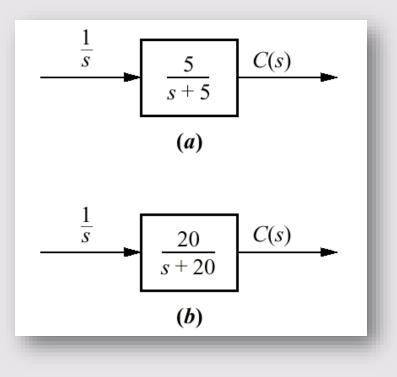
By definition itself, the input to the system should be a step function which is given by the following:

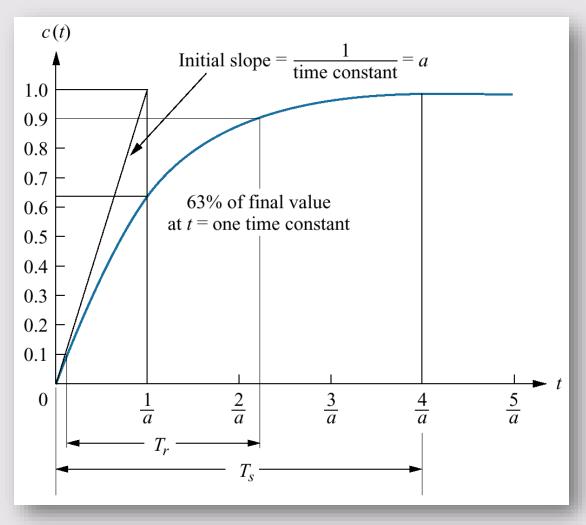
$$R(s) = \frac{1}{s}$$

General form:

Output response: $C(s) = \left(\frac{1}{s}\right) \left(\frac{K}{\tau s + 1}\right)$ $= \frac{A}{s} + \frac{B}{\tau s + 1}$ $c(t) = A + \frac{B}{\tau} e^{-t/\tau}$

Problem: Find the forced and natural responses for the following systems





First-order system response to a unit step

SECOND-ORDER SYSTEM General form:

$$G(s) = \frac{K\omega_n^2}{s^2 + 2\varsigma\omega_n s + \omega_n^2}$$

Where,

K : Gain

 $\boldsymbol{\varsigma}$: Damping ratio

 ω_{n} : Undamped natural frequency

Roots of denominator: $s^2 + 2\varsigma \omega_n s + \omega_n^2 = 0$

$$s_{1,2} = -\varsigma \omega_n \pm \omega_n \sqrt{\varsigma^2 - 1}$$

Natural frequency, ω_n

Frequency of oscillation of the system without damping.

Damping ratio, ς

Quantity that compares the exponential decay frequency of the envelope to the natural frequency.

Exponential decay frequency

Natural frequency (rad/s)

Problem: Find the step response for the following transfer function

$$G(s) = \frac{225}{s^2 + 30s + 225}$$

Answer:

$$c(t) = 1 - e^{-15t} - 15te^{-15t}$$

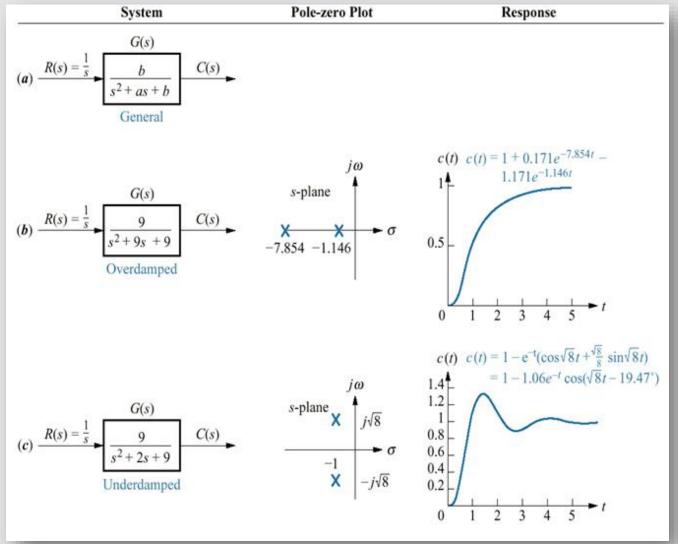
Problem: For each of the transfer function, find the values of ς and ω_n , as well as characterize the nature of the response.

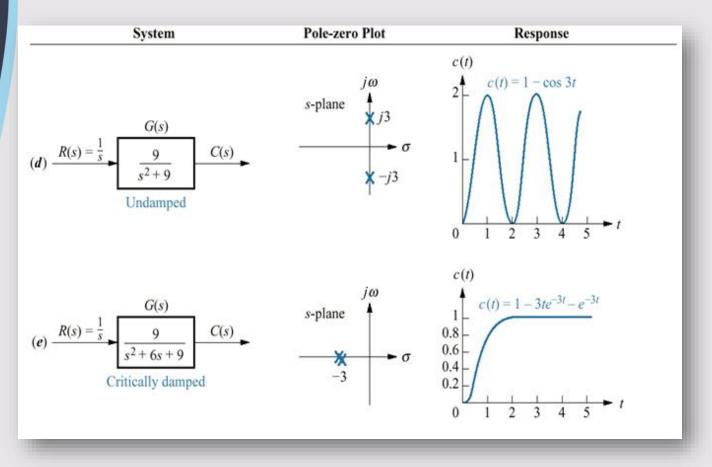
a)
$$G(s) = \frac{400}{s^2 + 12s + 400}$$

b)
$$G(s) = \frac{900}{s^2 + 90s + 900}$$

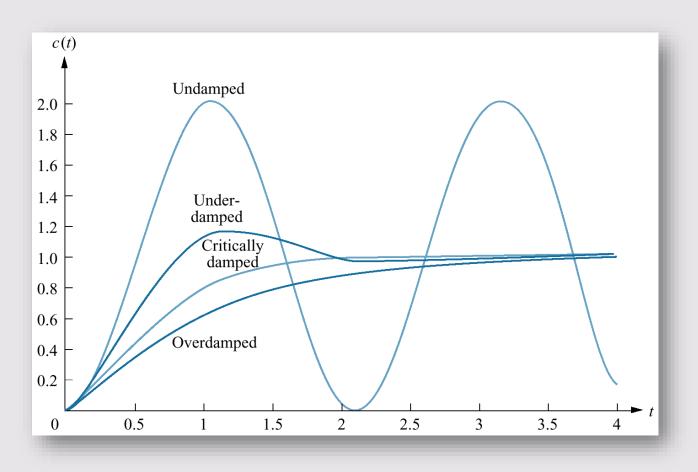
c)
$$G(s) = \frac{225}{s^2 + 30s + 225}$$

d)
$$G(s) = \frac{625}{s^2 + 625}$$

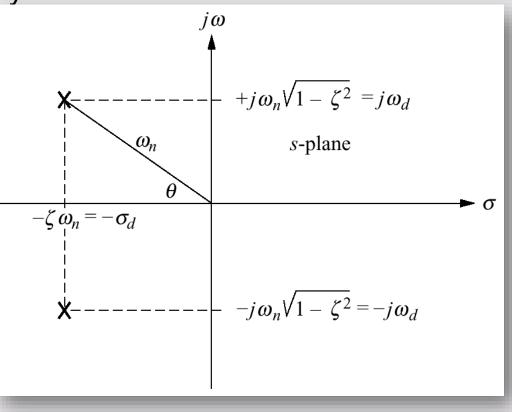




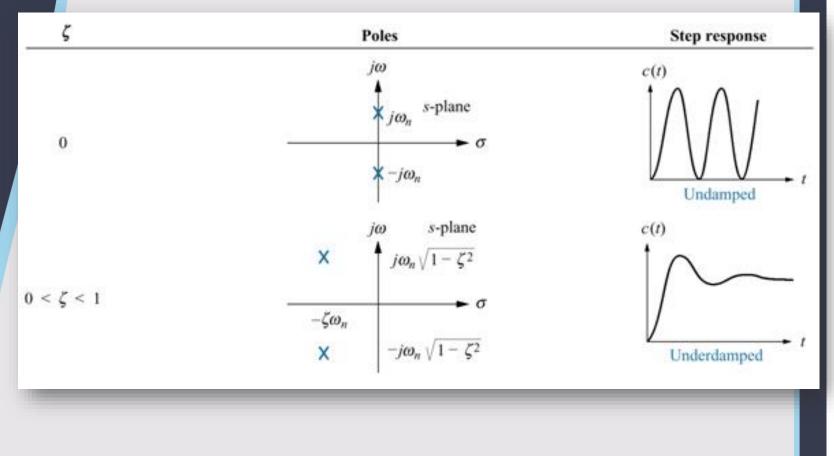
Step responses for second-order system damping cases



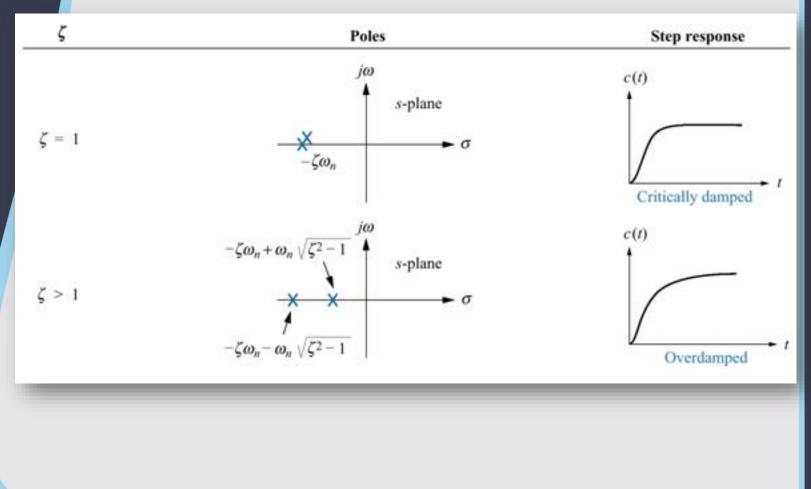
Pole plot for the underdamped second-order system



Second-order response as a function of damping ratio

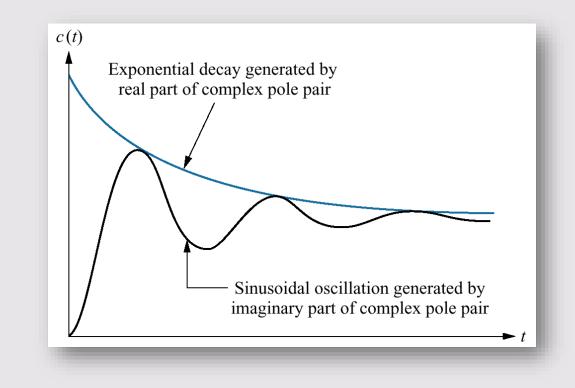


Second-order response as a function of damping ratio



SECOND-ORDER SYSTEM enturion $\varsigma < 1$, the transfer function is given by the following. Shaping Lives... Empowering Communities. $\frac{K\omega_n^2}{(s+\zeta\omega_n+j\omega_d)(s+\zeta\omega_n-j\omega_d)}$ Where, $\omega_d = \omega_n \sqrt{1 - \zeta^2}$ Pole position: jω $+j\omega_n\sqrt{1-\zeta^2} = j\omega_d$ ω_n *s*-plane - σ $-\zeta \dot{\omega}_n = -\sigma_d$ $----i\omega_n\sqrt{1-\zeta^2}=-j\omega_d$

Second-order response components generated by complex poles



Second-order underdamped responses for damping ratio value

