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INTRODUCTION

The concept of poles and zeros, fundamental to the analysis of 
and design of control system, simplifies the evaluation of 
system response.

The poles of a transfer function are:

i. Values of the Laplace Transform variables s, that cause the 
transfer function to become infinite.

ii. Any roots of the denominator of the transfer function that are 
common to roots of the numerator.

The zeros of a transfer function are:

i. The values of the Laplace Transform variable s, that cause the 
transfer function to become zero.

ii. Any roots of the numerator of the transfer function that are 
common to roots of the denominator.



INFLUENCE OF POLES ON TIME RESPONSE

The output response of a system is a sum of

i. Forced response

ii. Natural response

a) System showing an input and an output

b) Pole-zero plot of the system



INFLUENCE OF POLES ON TIME RESPONSE

c) Evolution of a system response. Follow the blue 

arrows to see the evolution of system 

component generated by the pole or zero



INFLUENCE OF POLES ON TIME RESPONSE

a) First-order system

b) Pole plot of the system

Effect of a real-axis pole upon transient response



FIRST-ORDER SYSTEM

General form:

Problem: Derive the transfer function for the following circuit
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FIRST-ORDER SYSTEM

Transient Response: Gradual change of output from initial to the 
desired condition.

Block diagram representation:

By definition itself, the input to the system should be a step 
function which is given by the following:
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Where,

K : Gain

 : Time constant



FIRST-ORDER SYSTEM

General form:

Output response:
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FIRST-ORDER SYSTEM

Problem: Find the forced and natural responses 
for the following systems



FIRST ORDER SYSTEM

First-order system response to a unit step 



SECOND-ORDER SYSTEM
General form:

Roots of denominator:
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Where,

K : Gain

ς : Damping ratio

n : Undamped natural frequency
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SECOND-ORDER SYSTEM

Natural frequency, n

Frequency of oscillation of the system without 
damping.

Damping ratio, ς

Quantity that compares the exponential decay 
frequency of the envelope to the natural 
frequency.

(rad/s)frequency  Natural

frequencydecay  lExponentia
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SECOND-ORDER SYSTEM

Problem: Find the step response for the following 
transfer function

Answer:
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SECOND-ORDER SYSTEM

Problem: For each of the transfer function, find the 
values of ς and n, as well as characterize the 
nature of the response.

a)

b)

c)

d)
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SECOND-ORDER SYSTEM



SECOND-ORDER SYSTEM



SECOND-ORDER SYSTEM

Step responses for second-order system damping 
cases



SECOND-ORDER SYSTEM

Pole plot for the underdamped second-order 
system



SECOND-ORDER SYSTEM

Second-order response as a function of damping 
ratio



SECOND-ORDER SYSTEM

Second-order response as a function of damping 
ratio



SECOND-ORDER SYSTEM

When 0 < ς < 1, the transfer function is given by the following.

Pole position:
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SECOND-ORDER SYSTEM

Second-order response components generated by 
complex poles



SECOND-ORDER SYSTEM

Second-order underdamped responses for damping 
ratio value


