

CONTENTS

- INTODUCTION
- HISTORY
- FREE RADICALS
- ANTIOXIDANTS
- CLASSIFICATON
- MECHANISM OF TISSUE DAMAGE
- **ROLE OF ANTIOXIDANTS IN PERIODONTICS**
- CONCLUSION
- REFERENCES

INTRODUCTION

- Oxygen is synonym for life
- Few oxygen atoms are destructive too free radicals or reactive oxygen species
- Unpaired electron in its structure Hydroxyl radical (0H)
 Superoxide anion(O₂)
 Hydrogen peroxide(H₂O₂)
 Hypochlorous acid(HCLO)

Intoduction

Free radicals are produced during:

Normal cellular activities

- ETC reactions
- Liver detoxification reaction
- Immune reactions

Pathological events

- Ionizing radiation
- Toxic chemicals
- Tissue
 ischemia

Disease states

- Inflammatory disease
- Degenerative disease
- carcinogenesis

Intoduction

Antioxidants:

- protect against harmful oxidative reactions
- Any substance that when present in low concentrations compared to that of an oxidisable substrate significantly delays or or inhibits the oxidation of that substrate.

In health a balance exists between pro oxidant and the antioxidant mechanisms

but in disease this balance is tipped in favour of the former.

HISTORY

Oxygen

Joseph priesley,1775

- In 19th century Engineers discovered anti- metal corrosion substance
- In mid 20th century From metal to food to cells
- Prevents oxidative damage to cellular components like DNA & Proteins.

FREE RADICALS

- Any species capable of independent existence that contains one or more unpaired electrons.
- Highly unstable & reactive
- Toxic react with DNA & cell membrane

INTERNAL SOURCES	EXTERNAL SOURCES
Mitochondria	Cigarette smoke
Phagocytes	Environment pollution
Arachidonate pathways	Radiation
Peroxisomes	UV light
Xanthine oxidase	Certain drugs & anaesthetics
Exercise	Organic compounds like pesticides
Inflammation & ischemia	Ozone

Phagocytes ,fibroblast, vascular endothelial cells & osteoclasts.

- Free radical species have been implicated in the pathogenesis
 of over 100 conditions
- Rheumatoid arthritis
- Type 2 diabetes mellitus
- Adult respiratory distress syndrome
- AIDS
- Atherosclerosis
- Myocardial infarction
- Cataracts
- Periodontal disease

Superoxide

Superoxide establishes a pro-inflammatory state

- Triggering nuclear factor-*k*B transcription
- Endothelial cell damage
- Increased vascular permeability
- Neutrophil chemotaxis via leukotriene B4 formation
- Lipid peroxidation

Nitric oxide

- •Nitric oxide synthases.
- Macrophage-derived nitric oxide synthase 2

 $\mathrm{NO}^{\bullet} + \mathrm{O}_2^{\bullet-} \to \mathrm{ONOO^-}$

• When released simultaneously with superoxide it forms the reactive nitrogen species **peroxynitrite anion**.

Peroxynitrite

Responsible for many of the cytotoxic effects:

- lipid peroxidation;
- glutathione depletion by oxidation;
- inhibition of superoxide dismutase activity;
- DNA damage by nitrosilation, deamination and oxidation;
- high concentrations cause rapid cellular necrosis
- low concentrations cause apoptosis.

Interaction between superoxide & nitric oxide to form peroxynitrite

Hydrogen Peroxide

• A weak ROS

- $< 50 \ \mu m$ limited cytotoxicity
 - more as a cell signaling molecule.

•Hydrogen peroxide – as a second messenger in nuclear factorκB activation.

Where inflammation is present it may:

- increase adhesion molecule expression;
- cell proliferation;
- induce apoptosis;
- modulate platelet aggregation.

The principal enzymes charged with removal of H_2O_2 are :

- Catalase predominantly acts intracellularly,
- Glutathione peroxidase within mitochondria and extracellularly
- Thioredoxin linked peroxidases

Hydroxyl Radical

- •Most potent species.
- •Cellular targets include:

$$\label{eq:Fe2+} \begin{split} \mathrm{F}e^{2+} + \mathrm{H}_2\mathrm{O}_2 &\to \mathrm{F}e^{3+} + {}^\bullet\mathrm{OH} + \mathrm{OH}^- \\ \text{(simplified Fenton reaction).} \end{split}$$

- <u>Lipids</u> lipid peroxidation
- Carbohydrates forming carbohydrate radicals or

depolymerizing mucopolysaccharides

- **<u>Protein</u>** most potent in oxidizing aliphatic amino acids
 - hydroxylation of tyrosine, tryptophan, phenylalanine etc
- **DNA** -most significant damage.

Extracellular targets include:

• Extracellular matrix components – proteoglycan

glycosaminoglycan

• **Collagens and structural proteins** – proline sites

The type1 collagen of periodontal ligament - particularly sensitive.

- Counteracting free radical damage:
 - 1.) Enzymes like glutathione peroxidase, superoxide dismutases & catalase.
 - 2.) Antioxidants –stable molecule to donate electron like glutathione, ubiquinol & uric acid. Vit A ,vit C, vit E.

ANTIOXIDANTS

Ideal antioxidants:

- No harmful effects
- Effective in low concentration
- Fat soluble
- Readily available
- Not contribute to objectionable flavor ,odor or colour to the fat.

Different kinds of antioxidants:

Natural	Synthetics
Tocopherols (delta >gamma>beta>alpha)	Butylated hydroxy anisole (BHA)
Nordihydroguaretic acid (NDGA)	Butylated hydroxy toluene (BHT)
Sesamol	Propyl gallate (PG)
Gossypol	Tertairy butyl hydroquinone (TBHQ)

Antioxidants

Mechanisms by which antioxidants may offer protection

- prevention of formation of free radicals
- interception of free radicals
- facilitating the repair
- providing a favourable environment

CLASSIFICATION

Antioxidants can be categorized by several methods:

- Types
- Mode of action
- Location
- Solubility
- Structural dependents

2.) Mode of Action

PREVENTIVE

- Enzymes: superoxide dismutase, catalase, glutathione
- Metal ion sequestrators: carotenoids, superoxide dismutase, catalase, glutathione, uric acid, flavenoids

SCAVENGING

 Ascorbate, carotenoids, uric acid,α-tocopherol. flavenoids, ubiquinone, thiols

3.) Location

INTRACELLULA R

• SOD 1 and 2, catalase, glutathione peroxidase, DNA repair enzymes

EXTRACELLULA R

• SOD 3, reduced glutathione, ascorbate, carotenoids, uric acid

MEMBRANE ASSOCIATED

• α-Tocopherol

4.) Solubility

5.) Structures they Protect

6.) Origin

EXOGENOUS

• Carotenoids, ascorbic acid, tocopherols, polyphenols

ENDOGENOUS

• Catalase, superoxide dismutase, glutathione

Ascorbic acid (Vitamin C)

SOURCES : Citrus fruits, oranges, pineapple, grapes, green peppers, cabbage, watermelon, papaya, spinach, & strawberries

• Scavenging water-soluble peroxyl, perhydroxyl

,superoxide,hypochlorous acid,& singlet oxygen

- •Decreases heme breakdown by preventing fenton reactions
- Re-forms α-tocopherol from its radical;
- Protects against ROS-release from cigarette smoke.

These systems are intracellular

α-Tocopherol (vitamin E)

SOURCES : Unsaturated fats like sunflower, safflower, olive, and wheat germ oils, whole-wheat flour

- •Most important and effective **lipid-soluble** antioxidant
- •Vital to maintaining cell membrane integrity
- •Requires other antioxidant species to be re-constituted

(co-enzyme Q10 and ascorbic acid)

•Levels in plasma - significantly compromised in smokers.

Vitamin E possesses anti-inflammatory & antioxidant properties

- Inhibition of protein kinase C and subsequent platelet aggregation
- Inhibition of nitric oxide production by vascular endothelium
- Inhibition of superoxide production by macrophages and

neutrophils

<u>The limitations as an antioxidant are the result of :</u>

• Its limited mobility within cell membranes

•Its lack of water solubility (many ROS are generated in the

aqueous phase).

Carotenoids

SOURCES : Deep orange, red, yellow fruits & vegetables like carrots, pumpkin, sweet potatoes, red grapes , watermelon, tomatoes

Carotenoids are tetraterpines with over 600 variants.

- lycopene
- α-carotene
- β-carotene

- cryptoxanthine
- retinol (vitamin A1)
- dehydroretinol (vitamin A2)

Lycopene

SOURCES: Tomatoes, apricots, guava, watermelon, papaya

- •2 times as great as carotenes
- •Cooked tomatoes are better than raw ones
- •Protective against cancer of lung, stomach,& prostate

Vitamin A is controversial as an antioxidant

Behavior depends upon the oxygen tension of the immediate environment.

- •At low partial oxygen pressures found in most tissues
 - as an antioxidant
- •At higher oxygen tensions
 - Pro oxidant behaviour

Polyphenols (Flavenoids)

- •Absorbed following dietary intake of vegetables, red wine, tea.
- •There are over 4,000 known flavenoids
- •Most researched catechin,epigallocatechin gallate, polyphenol,
- radical scavenging
- terminating lipid peroxidation
- iron chelation
- vitamin E & vitamin C

Other sources of Antioxidants are:

Honey	Green tea
Caffeic acid phenethyl ester(CAPE)	Epigallocatechin 3- gallate
Anti cancer	Effective in oral leukoplakia

Uric acid

Major radical scavengers within plasma, urine, and saliva.

- Scavenger of singlet oxygen
- Scavenger of hydroxyl radicals
- Scavenger of hypochlorous acid
- Protection of a1-antitrypsin
- Preventing fenton chemistry by binding of divalent metal ions .

Reduced Glutathione

- •<u>A non essential tripeptide</u>
- Reduced form (GSH)- an antioxidant (radical scavenger).
- Regulation of IL-2 dependent T-lymphocyte proliferation.
- Maintains intracellular redox balance signaling pathways
- A neurotransmitter
- Preservation and restoration of other antioxidant species

•Innate and fundamental defense strategy at exposed epithelial surfaces.

•Smoking of a single cigarette – significantly reduces salivary & plasma glutathione

- Protects against the cytotoxic actions of nicotine on fibroblasts.
- •Some periodontal pathogens convert it to the cytotoxic H_2S

Superoxide Dismutase

- •localized within human PDL & important defense mechanism
- within gingival fibroblasts
- •<u>SD 1</u> a Cu2+/Zn2+-dependent enzyme found within the cytosol
- •<u>SD 2</u> the Mn2+-dependent enzyme located within the mitochondria;
- •<u>SD 3</u> at low levels extracellularly

MECHANISMS OF TISSUE DAMAGE

Protein damage:

- protein folding or unfolding
- protein fragmentation and polymerization reactions
- protease degradation of the modified protein
- formation of protein radicals
- formation of protein-bound ROS
- formation of stable end products e.g. carbonyl compounds

A schematic view of the effects of ROS on proteins and amino acids (Dean et al.)

Lipid peroxidation.

•Most common

•Most effective - hydroxyl radical, peroxynitrite anion

•Halliwell describes the reaction in three major stages:

initiation;

propagation;

termination.

The lipid peroxidation chain reaction initiated by hydroxyl radicals

L[•] = carbon - centred radical LOO[•] = lipid peroxyl radical

LOO H = lipid hydroperoxide

DNA damage

Mechanisms of DNA damage :

- strand breaks
- base pair mutations (purine and pyrimidine bases)
- deletions;
- insertions;
- nicking;
- sequence amplification.

Hydroxyl radicals -cause damage to all four bases

ROLE OF ANTIOXIDANTS IN PERIODONTICS

• ROS in pathogenesis of periodontal disease

Halliwel,2000

- PMNs (respiratory burst) are primary source of ROS
- Hydroxyl radical production by PMN

Tauber etal, 1997

• Free radical in collagen destruction

Asman B etal, 1994

• Decrease in total antoxidant activity of saliva & serum in periodontitis

Diab LR etal 2003, Pendyala G,2009

ROLE OF ANTIOXIDANTS.....

The protective or destructive effect of PMN could be associated to the antioxidant capacity of tissues in an oxidative stress condition.

ROLE OF ANTIOXIDANTS.....

- Within the pocket a low redox potential essential for growth of subgingival anaerobes ,also protective against oxidative stress.
- ROS production : mothwashes(listerine) toothpastes(Na ascorbyl PO₄)

DV Scully,2003

Battino et al ,2002 & 2005

Poor periodontal health is associated with increased carbonyls in saliva

• ROS generation in periodontal disease causes bone resorption, increases matrix metallo proteinases activity

Chapple IL,2006

• Progressive reduction in SOD levels from healthy nonsmokers to light smokers to heavy smokers

Agnihotri R,2010

• Antioxidant supplementation can reduce the incidence & recurrence of periodontal disease

Antioxidants for oral lesions

- Lycopene protect against cell damage & progression of dysplasia.
- Superoxide dismutase, vit E & β -carotene in OSMF

Kumar A etal,2006

Mohitpal etal, 2004

Triretinoin topically for OLP

Sloberg etal, 1979

Tazarotene for OLP

Petruzzi etal,2002

Noni (anti oxidant vitamins)for reducing severity of viral infections like herpes

Conclusion

REFERENCES

- Haffajee AD, Socransky SS. Microbial etiological agents of destructive periodontal diseases.*Periodontology* 2000. 1994;5:78–111.
- 2. Jain l. c. chapple & john b. matthews The role of reactive oxygen and antioxidant species in periodontal tissue destruction Perio 2000, Vol. 43, 2007, 160–232
- 3. **liwell B.** Oral inflammation and reactive species: a missed opportunity? Oral Dis 2000: 6: 136–137.

4 Battino M, Ferreiro MS, Armeni T, Politi A, Bompadre S,Massoli A, Bullon P. In-vitro antioxidant activities of antioxidant-enriched toothpastes. *Free Radic Res* 2005: 39:343–350.

- 5. Royack GA, Nguyen MP, Tong DC, Poot M, Oda D. Response of human oral epithelial cells to oxidative damage and the effect of vitamin *E. Oral Oncol* 2000: 36: 37–41.
- 6. Battino M, Ferreiro MS, Galalrdo I, Newman HN, Bullon P. The antioxidant capacity of saliva. *J Clin Periodontol* 2002;29: 189–94.
- 7. Chapple IL, Matthews JB. The role of reactive oxygen and antioxidant species in periodontal tissue destruction. *Periodontology 2000*. 2007;43:160–232.

Thank you

Anti-oxidants kicks out the free radicals