Ansoft EM Solvers Maxwell vs HFSS

Differential Form of Maxwell's Equations

Full-wave (e.g. HFSS)

Faraday's Law of Induction $\nabla \times$

$$\nabla \times E = -\frac{\partial B}{\partial t}$$

 $\sim n$

Gauss's Law for Magnetism $\nabla \bullet B = 0$

Ampere's Law

V = D = 0

 $\nabla \times H = J + \frac{\partial D}{\partial t}$

Gauss' s Law for Electricity $\nabla \bullet D = \rho$

Ampere's Law

Example: Maxwell: Magnetic Transient Formulation

Faraday's Law of Induction $\nabla \times E = -\frac{\partial B}{\partial x}$

 $\nabla \bullet B = 0$ Gauss' s Law for Magnetism

Quasi-Static: e.g. Maxwell, Q3D

Gauss's Law for Electricity

ANSYS[®]

Variable-Speed Drive Classical Design Issues

© 2010 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Variable Speed Drive EMC/EMI Issues

- Classical Design Considerations: Conducted low-frequency phenomena
 - Harmonic Line Currents (16.7Hz-60Hz, v<= 49)
 - Interharmonics, Flicker
 - Overvoltages
 - Harmonic Motor Currents (0 - 500Hz, v<= 49)

Interaction of Converter with Supply Network

Interaction of Converter with Motor & Mechanics

 Analysis of these Phenomena with Simulation tools like Simplorer is "State of the Art"

Variable-Speed Drive Developing EMI Issues

© 2010 ANSYS, Inc. All rights reserved.

Variable Speed Drive EMC/EMI Issues

Developing Issues

- Power electronics being installed closer to humans (e.g. ICE3 train or Hybrid car)
- Switching Frequencies are increasing
 - Higher Radiating Content
 - Frequency dependence of electrical parts becomes more relevant (e.g. skin effect)

Variable Speed Drive EMC/EMI Issues

- Resulting Problems and Challenges
 - Bearing Currents (Common mode problem)
 - Insulation Fatique
 - Losses / Thermal Problems
 - Electromagnetic Field Limits

⇒ Higher Requirement on Impedance Characterisation of the system at higher frequencies

⇒ Require Simulation techniques not traditionally applied in this area

High Power Inverter Application

• These power converters are used in high speed trains (TGV)

High Power Inverter Application 6.5kV IGBT Module Analysis

 Electrical Characterization of the IGBT

- Find switching currents for power dissipation
- Use power dissipation to determine environmental electromagnetic fields

High Power Inverter Application EMC Workflow

- Three-dimensional IGBT pack model
- Parasitic model extraction
- IGBT circuit model for System Simulation
- Far Field Study for Electric Field

High Power Inverter Application Simulation Techniques

- Three-dimensional IGBT pack model
- Parasitic model extraction
- IGBT circuit model
- Far Field Study for Electric Field EM

EMI/EMC Electrical Parasitics Extraction

 Extract the resistance, inductance, capacitance and conductance (RLCG) parameters of the entire package

Frequency can have a significant impact on the design performance

EMI/EMC Electrical Parasitics Extraction

 Extracting parameters is straightforward as the nets are automatically assigned

EMI/EMC Q3D Example R-L Characterisation

Inductance and Resistance are evaluated over frequency

EMI/EMC Parasitics Extraction

• The simulation outputs consist of the RLC matrices, one for each frequency of interest.

Solutions: Pack_igbt_v4 - Design_simplifie1					
Simulation: Setup1	Sweep1	AC RL	•		
anim Mariatian II					
esign variation:					
Profile Convergence Mesh Statistics Matri	ix]				
🗹 Resistance Units: ohm	🔹 Matrix 💽	0 (MHz)	xport 生		
✓ Inductance Linits: nH					
			1	1	
	collecteurpack:collecteur1a	collecteurpack:collecteur1b	collecteurpack:collecteur2a	collecteurpack:collecteur2b	collecteurpack:collecteur3a
Freq: U (MHz)			0.00004744.47.070		
collecteurpack:collecteur1a	0.00024714, 47.273	0.00010662, 38.024	0.00024714, 47.376	0.00010662, 37.924	0.00019129, 44.721
collecteurpack:collecteur1b	0.00010662, 38.024	0.00035739, 50.514	0.00010662, 38.057	0.00035739, 50.476	0.00010663, 41.674
collecteurpack:collecteur2a	0.00024714, 47.376	0.00010662, 38.057	0.00025298, 47.561	0.00010662, 37.955	0.00019129, 44.82
collecteurpack:collecteur2b	0.00010662, 37.924	0.00035739, 50.476	0.00010662, 37.955	0.00036322, 50.52	0.00010663, 41.57
collecteurpack:collecteur3a	0.00019129, 44.721	0.00010663, 41.674	0.00019129, 44.82	0.00010663, 41.57	0.00036871, 55.342
collecteurpack:collecteur3b	0.00010658, 38.665	0.00018615, 39.885	0.00010658, 38.694	0.00018615, 39.843	0.00010658, 37.826
collecteurpack:collecteur4a	0.00019129, 44.637	0.00010663, 41.644	0.00019129, 44.731	0.00010663, 41.543	0.00036287, 55.168
collecteurpack:collecteur4b	0.00010658, 38.79	0.00018615, 39.948	0.00010658, 38.822	0.00018615, 39.901	0.00010658, 37.951
collecteurpack:d1a	0.00024131, 47.067	0.00010662, 37.984	0.00024131, 47.157	0.00010662, 37.886	0.00019129, 44.591
collecteurpack:d1b	0.00010662, 38.143	0.00035155, 50.485	0.00010662, 38.18	0.00035155, 50.434	0.00010663, 41.799
collecteurpack:d2a	0.00019129, 44.534	0.00010663, 41.611	0.00019129, 44.623	0.00010663, 41.514	0.00035703, 54.972
collecteurpack:d2b	0.00010658, 38.956	0.00018615, 40.026	0.00010658, 38.992	0.00018615, 39.974	0.00010658, 38.118
emetteurpack:dio1a	0, 12.452	0, 9.791	0, 12.401	0, 9.8142	0, 9.099
emetteurpack:dio1b	0, 5.5942	0, 14.206	0, 5.4701	0, 14.299	0, 7.805
emetteurpack:dio2a	0, 11.151	0, 13.035	0, 11.11	0, 13.059	0, 15.496
emetteurpack:dio2b	0, 6.5151	0, 8.0262	0, 6.3914	0, 8.1293	0, 4.6768
emetteurpack:emetteur1a					_
					F
Class					
]		

EMI/EMC IGBT Mesh and Field Result

EMI/EMC Parasitics Extraction

• How do we set up the frequency sweep?

Nyquist sampling: To capture a time step of Ts, obtain frequency domain information up to:

$$F_{\rm max} = \frac{1}{2 \times t_s}$$

 For a time domain waveform with a risetime of 80 ns, in order to capture the ringing in the time domain, we would want to capture at least 4 samples during this risetime. This implies a sampling time of 20 ns

We need to solve up to 50 MHz (= 1/20ns)

Edit Sweep					×
Sweep Name:	Sweep1				🔽 Enabled
Sweep Туре:	Discrete]			
Frequency Setu	q			Frequency	_
Туре:	LinearStep 💌)MHz	
).5MHz	
Start	0 MHz 💌	Display >>	1	MHz	
Stop	50 MHz 🔻		1	.5MHz	
			2	2MHz	
Step Size	0.5 MHz 💌		2	2.5MHz	
E Com Field	- (All E		3	3MHz	
J Save Fields (All Frequencies)					-

IGBT Characterization

IGBT Device Generation Characterization Tool

Extraction of the IGBT Electro-Thermal Parameters

IGBT Family Electro-Thermal Model

	Average		lodel	
	A DC core	В	F	
	Energy calculation			
Thermal network				

Maximum simulation speed:

- Accurate static behaviour
- Accurate thermal response
- No voltage and current transients
- Suitable for system design analysis

Dynamic IGBT Model

Maximum simulation accuracy:

- Sophisticated semiconductor based model
- Accurate static, dynamic and thermal behaviour
- Accurate gate voltage and current waveforms
- Suitable for drive optimization, EMI/EMC

The Dynamic IGBT Model

- Dynamic IGBT shares the same static the Average model
- The switching energy of the Dynamic IGBT model is the direct integration of the switching voltage and current

The Dynamic IGBT Model (2)

- Dynamic IGBT accurately captures the switching waveforms
- Suitable for EMI/EMC analysis

28

System Integration

Circuit Design based on Parametrized IGBT and Frequency Dependent Model

System Simulation

The power pulse duration is much smaller than the rise/fall time of Ic and Vce

System Integration

Circuit Design based on Parametrized IGBT and Frequency Dependent Model

© 2010 ANSYS, Inc. All rights reserved.

Full Wave Effect

Emitted Fields

For each frequency, the power amplitude is entered

Emitted Fields

Frequency range	Electric field strength, E (V/m)	Magnetic field strength, H (A/m)	Magnetic flux density, Β (μΤ)	Equivalent plane wave power density, S _{eq} (W/m ²)	Contact current, I _c (mA)	Limb induced current, I _L (mA)
0 — 1Hz	_	1,63x10 ⁵	2x105	_	1,0	_
1 — 8 Hz	20 000	1,63x10 ⁵ /f ²	2x105/f2	—	1,0	_
8 — 25 Hz	20 000	2x104/f	2,5x104/f	—	1,0	—
0,025 — 0,82kHz	500/f	20/f	25/f	—	1,0	—
0,82 — 2,5 kHz	610	24,4	30,7	—	1,0	—
2,5 — 65 kHz	610	24,4	30,7	—	0,4 f	—
65 — 100 kHz	610	1 600/f	2 000/f	_	0,4 f	—
0,1 — 1 MHz	610	1,6/f	2/f	—	40	—
1 — 10 MHz	610/f	1,6/f	2/f	—	40	—
10 — 110 MHz	61	0,16	0,2	10	40	100
110 — 400 MHz	61	0,16	0,2	10	_	—
400 — 2 000 MHz	3f ^{1/2}	0,008f ¹ 2	0,01f ⁹ 2	f/40	_	_
2 — 300 GHz	137	0,36	0,45	50	—	—

Regulators impose maximum levels of electric fields close to electric equipment.

In the 10-110 MHz range:

•

•

Exposure limits defined by European Community

Emax=61V/m

Emitted Fields

mag E @ 100 MHz, Power = 10 000W

- The E field is very localized close to the module even at 100 MHz
- However, the very high power can lead to large values of E field even far from the module
- This design is fine at 110MHz.

	Power	E field at 1m
Spectrum (MHz)	(W)	(V/m)
115.7024793	2308.359536	10.35553171

The virtual test of the whole car body

Setting the IGBT package

Mesh: 187,137

NSYS[®]

Noise transfer between an IGBT package and a cable

CPU time: 34m41s (Pentium M, 2GHz)

One more sample

The Virtual Test The Whole Car Body

Conclusions

- EMC in power electronics systems can be studied in a simulation environment by considering:
 - Frequency-dependent system impedances (parasitics)
 - Electrical dynamics of switching devices
 - Radiation effects using full-wave FEM
- Software Integration of Simplorer, Q3D, HFSS allows efficient system simulation