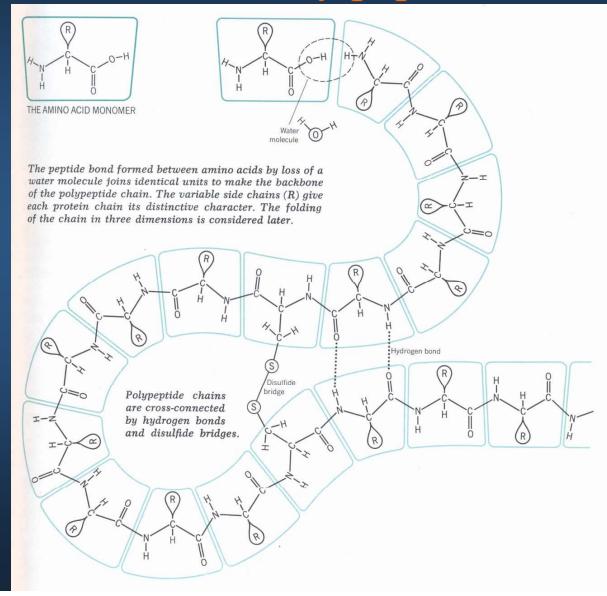
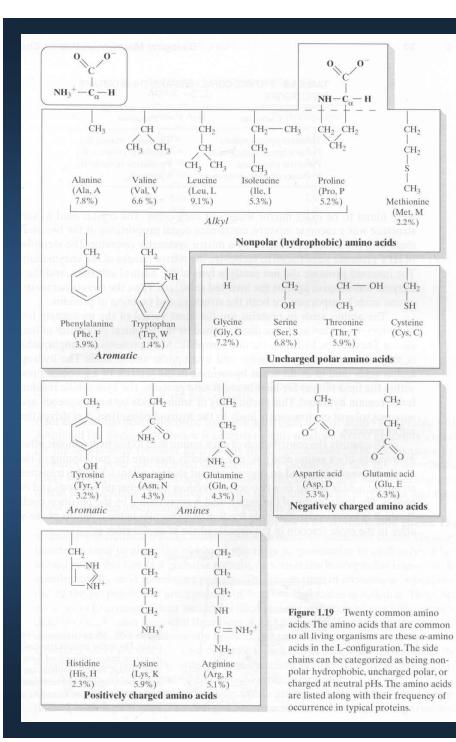
# **Protein Structure and Dynamics**

## Key concepts

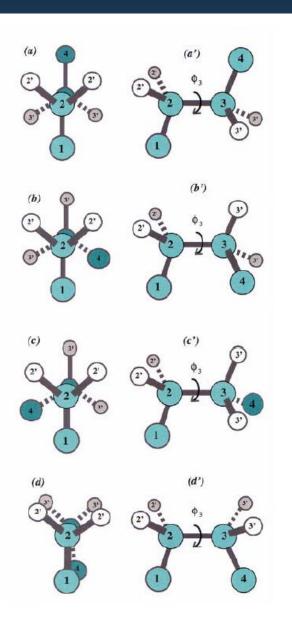

• Proteins have well defined 3D structure


• Structural hierarchy: from primary to tertiary

ightarrow

• Proteins are not static

### A protein consists of a sequence of amino acids bound by peptide bonds



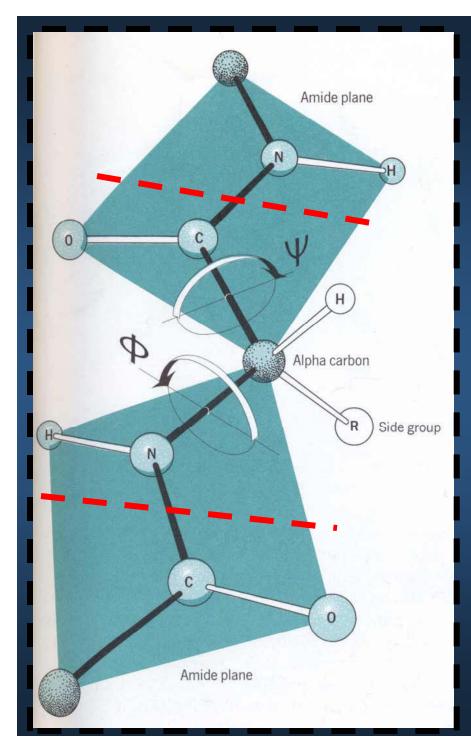



• Only 20 different types of amino acids are used by proteins

• Bonding of amino acids in different sequences makes all the protein diversity

### Definition of dihedral angles



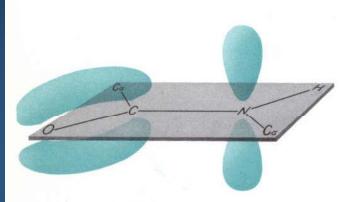

Range: -180° to 180°

 $180^0 = \text{trans}$ 

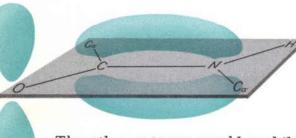
 $-60^{\circ} = \text{gauche}^+$ 

 $60^{\circ} = \text{gauche}^{\circ}$ 

 $0^0 = \operatorname{cis}$ 

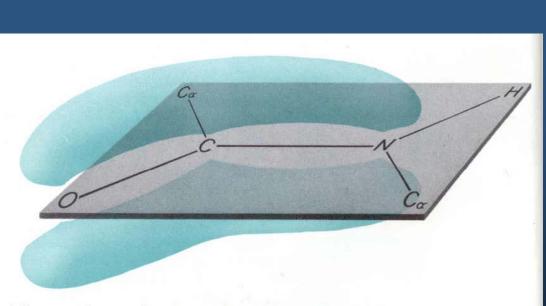



# Peptide chain local geometry


Peptide plane is formed by C<sub>α</sub>, C, O, N, H, C<sub>α</sub> atoms
ω angle is formed by Ca-C-N-Ca
φ angle is formed by C-N-Ca-C
ψ angle is formed by N-Ca-C-N
rotations about φ and ψ angles are the softest

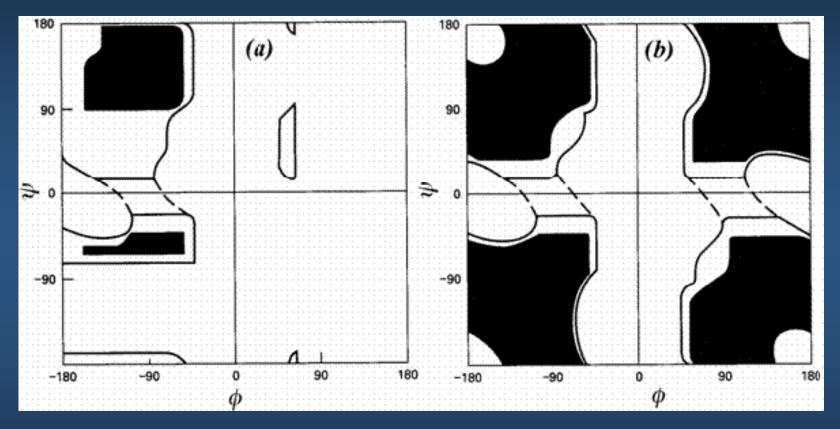


The link between carbonyl carbon and nitrogen (—CO—NH—) is the fundamental structural unit of the polypeptide chain.




A pure double bond between C and O would permit free rotation around the C—N bond.




The other extreme would prohibit C-N bond rotation but would place too great a charge on O and N.

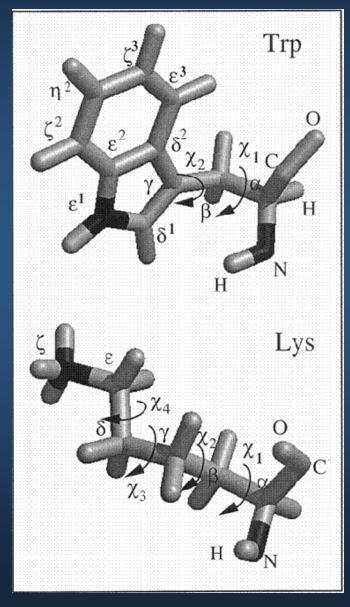
# The peptide plane



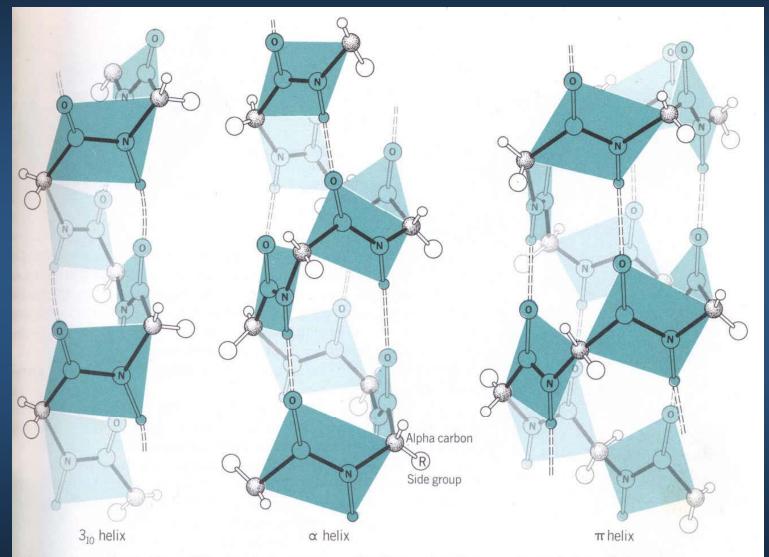
The true electron density is intermediate. The barrier to C—N bond rotation of about 21 kcal/mole is enough to keep the amide group planar.

# Local restrictions on flexibility: the Ramachandran plot



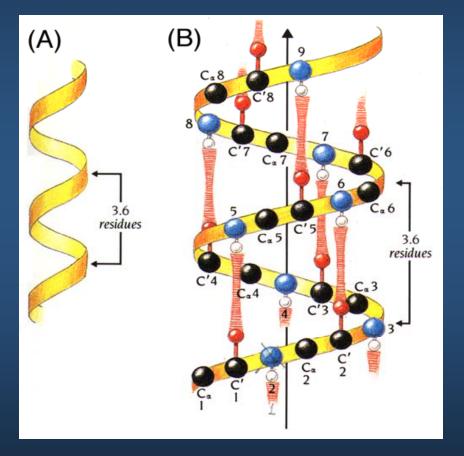

#### All residues

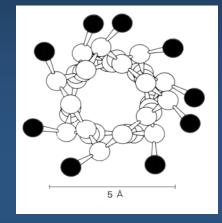
#### Glycine

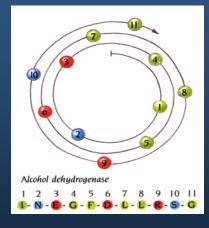

The presence of chiral Ca atoms in Ala (and in all other amino acids) is responsible for the asymmetric distribution of dihedral angles in part (a), and the presence of Cb excludes the portions that are accessible in Gly.

# Side chains enjoy additional degrees of freedom

| Side-chain angles | X | 1 X | 2 7      | ( <sub>3</sub>   X                             | 4       |     |    | Atom<br>position                |
|-------------------|---|-----|----------|------------------------------------------------|---------|-----|----|---------------------------------|
| RESIDUE ATOM      | α | β   | γ        | δ                                              | ε       | ζ   | η  | fixed by                        |
| Gly               | ٠ |     |          |                                                |         |     |    | Main                            |
| Ala               | • | •   |          |                                                |         |     |    | chain                           |
| Pro               | • | •   | •        | •                                              |         |     |    |                                 |
| Val               | • |     | -        |                                                |         |     |    |                                 |
| Cys               | • | -   | –s       |                                                |         |     |    |                                 |
| Ser               | • | •   | -0       |                                                |         |     |    | X <sub>1</sub>                  |
| Thr               | • | -•< |          |                                                |         |     |    |                                 |
| Ile               | • | +   | <b>:</b> | •                                              |         |     |    |                                 |
| Leu               | • | •   | -•-      | <₹                                             |         |     |    |                                 |
| Asp               | • | •   | -•<      | <u></u> -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 |         |     |    | X <sub>1</sub>                  |
| Asn               | • | •   | -•<      |                                                |         |     |    | and                             |
| His               | • | •   | -•<      | <b> </b> ∼                                     | -N<br>- |     |    | X <sub>2</sub>                  |
| Phe               | • | •   | -•<      | <₽                                             | •       | >   |    |                                 |
| Tyr               | • | •   | -•<      | <₽                                             | ₽       | >●- | —o |                                 |
| Ттр               | • | •   | -•-      |                                                |         | •   | >  |                                 |
| Met               | • | •   | •        | -s-                                            | •       |     |    | ~ ~                             |
| Glu               | • | •   | •        | +•~                                            |         |     |    | X <sub>1</sub> , X <sub>2</sub> |
| Gln               | • | •   | •        | •~                                             |         |     |    | and X <sub>3</sub>              |
| Lys               | • | •   | •        | •                                              | •       | - N | N  | X <sub>1'</sub> X <sub>2'</sub> |
| Arg               | • | •   | •        | •                                              | - N —   | •<  | -N | $\chi_3$ and $\chi_4$           |





## Secondary structure: helixes

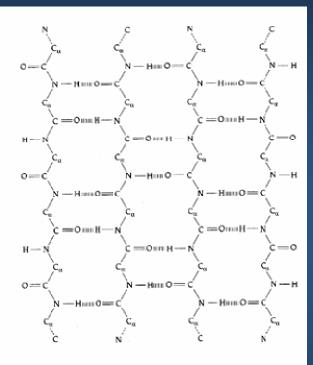


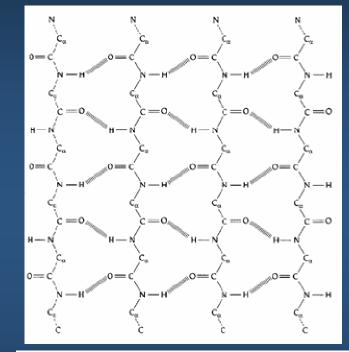

The  $3_{10}$ ,  $\alpha$ , and  $\pi$  helices differ in their patterns of hydrogen bonding, as shown below. Hydrogen bonds in the  $\alpha$  helix are particularly unstrained, making the  $\alpha$  helix especially stable. The  $\alpha$  carbons are stippled, with small attached spheres for hydrogens and larger spheres for side groups.

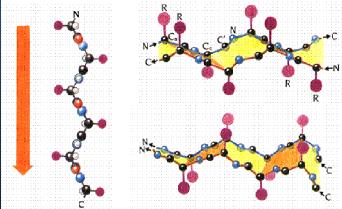
# A closer look at Alpha-helix



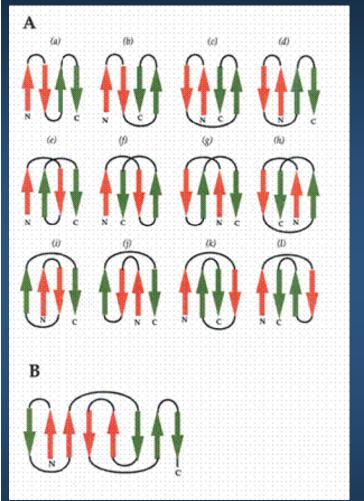




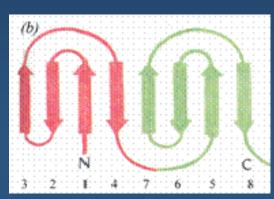


Helical wheel diagram


# Secondary structure: β-sheets

#### Antiparallel β-sheet


Parallel **B**-sheet








### Supersecondary structures



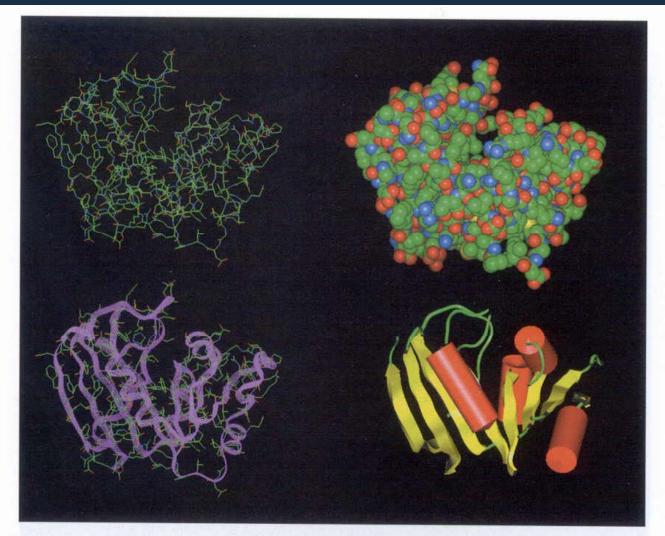
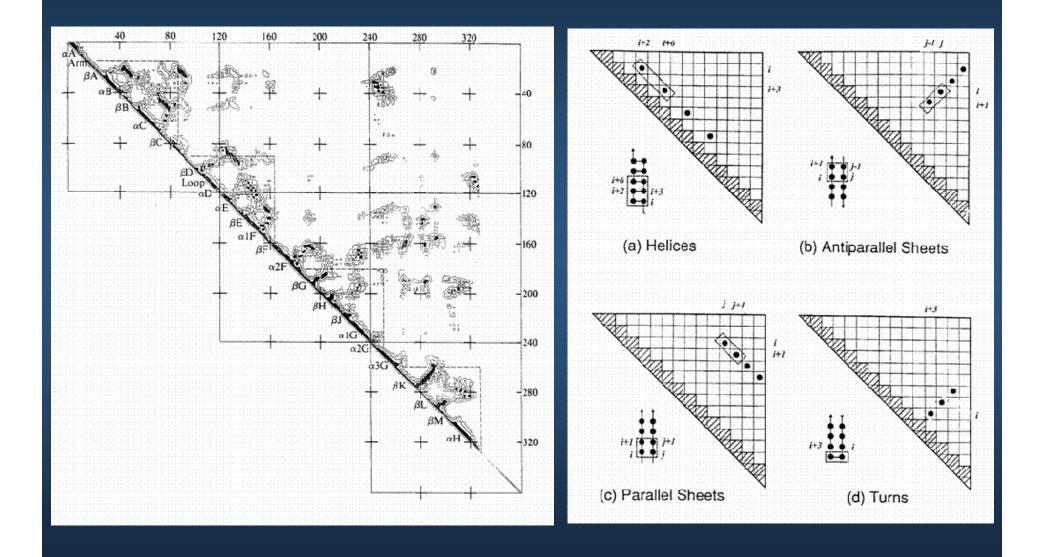


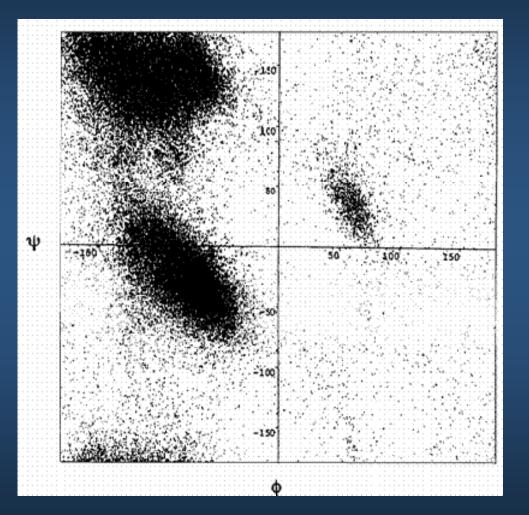


Schematic view of a  $\beta$ -barrel fold formed by the combination of two Greek key motifs, shown in red and green, and the topology diagram of the Greek key motifs forming the fold (adapted from Branden and Tooze, 1999)

Only those topologies where sequentially adjacent b-strands are antiparallel to each other are displayed. (A) 12 different ways to form a four-stranded b-sheet from two b-hairpins (red and green), if the consecutive strands 2 and 3 are assumed to be antiparallel. Not all topologies are equally probable. (j) and (l) are the most common topologies, also known as Greek key motifs; (a) is also relatively frequent; whereas (b), (c), (e), (f), (h), (i) and (k) have not been observed in known structures (Branden and Tooze, 1999).

# **Tertiary Structure**



Fig. 1.5: Graphical representations of proteins illustrated using the enzyme dihydrofolate reductase [Bolin et al. 1982]. Clockwise from top left: stick, CPK, 'cartoon' and 'ribbon'.

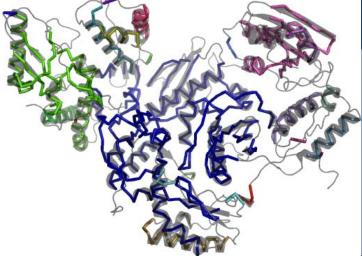


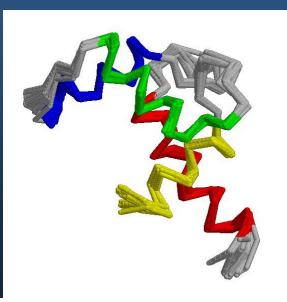
### **Contact Maps Describe Protein Topologies**



# Dihedral angle distribution of database structures



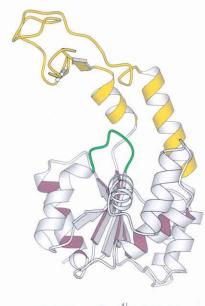

Dots represent the observed  $(\varphi, \psi)$  pairs in 310 protein structures in the Brookhaven Protein Databank (adapted from (Thornton, 1992))


## The Protein Data Bank (PDB)

- Electronic storage, in standard format, of thousands of protein structures – including wild-type, mutants, ligand-bound, and proteinprotein complexes
- Freely downloadable
- (x,y,z) coordinates of atoms given
- Data from X-ray, NMR, modelling
- http://rutgers.rcsb.org/pdb/

| HEADER<br>COMPND<br>SOURCE<br>AUTHOR<br>REVDAT<br>JRNL<br>JRNL<br>JRNL<br>JRNL<br>JRNL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TITL CA<br>TITL 2 RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (VERTEBRATE<br>SAPIENS) F<br>HYAYA,F.A.Q | C)<br>RECOMBINAN<br>QUIOCHO<br>AYA,W.E.N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NT FORM<br>MEADOR,A.R<br>REFINED AT                                                                                                                      | 1.7 ANGSTE                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    | 1CLL21CLL31CLL41CLL51CLL61CLL71CLL81CLL91CLL10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HELIX<br>HELIX<br>HELIX<br>HELIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 I THR<br>2 II THR<br>3 III GLU<br>4 IV PHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 PHE<br>29 ARG<br>45 VAL<br>65 PHE      | 19 1<br>37 1<br>55 1<br>92 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SEE REMARI                                                                                                                                               | к б                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    | 1CLL 130<br>1CLL 131<br>1CLL 132<br>1CLL 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| АТОМ         АТОМ | 1       N       LEU         2       CA       LEU         3       C       LEU         4       O       LEU         5       N       THR         6       CA       THR         7       C       THR         8       O       THR         9       CB       THR         10       OG1       THR         11       CG2       THR         12       N       GLU         13       CA       GLU         14       C       GLU         15       O       GLU         16       CB       GLU         17       CG       GLU         18       CD       GLU         19       OE1       GLU         20       OE2       GLU         21       N       GLU | 6 –                                      | -6.696<br>-6.318<br>-5.313<br>-7.147<br>-6.891<br>-6.801<br>-5.829<br>-7.923<br>-7.923<br>-7.704<br>-7.781<br>-7.781<br>-7.7858<br>-6.502<br>-6.040<br>-8.881<br>-9.358<br>10.322<br>10.775<br>20.648<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>20.22<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.878<br>-5.87 | 22.0032623.3912523.9812623.8712525.1932426.2282525.6262325.3862325.3862324.9432126.2172627.3432828.4832826.7262827.6992927.1493026.0343027.7013126.22428 | .447 1.00<br>.929 1.00<br>.352 1.00<br>.013 1.00<br>.428 1.00<br>.543 1.00<br>.543 1.00<br>.561 1.00<br>.323 1.00<br>.908 1.00<br>.974 1.00<br>.419 1.00<br>.419 1.00<br>.557 1.00<br>.224 1.00<br>.423 1.00<br>.592 1.00<br>.657 1.00<br>.668 1.00<br>.334 1.00<br>.706 1.00 | 49.53<br>48.82<br>46.50<br>45.72<br>46.77<br>46.84<br>45.36<br>47.41<br>46.33<br>48.28<br>44.31<br>46.42<br>45.65<br>44.22<br>42.97<br>50.13<br>55.79<br>58.96<br>62.89<br>60.58<br>41.38<br>39.78 | 1CLL       148         1CLL       150         1CLL       151         1CLL       152         1CLL       153         1CLL       153         1CLL       154         1CLL       155         1CLL       155         1CLL       156         1CLL       157         1CLL       158         1CLL       159         1CLL       160         1CLL       161         1CLL       163         1CLL       163         1CLL       164         1CLL       165         1CLL       164         1CLL       165         1CLL       166         1CLL       167         1CLL       168         1CLL       168 |

# Protein dynamics: proteins are NOT static





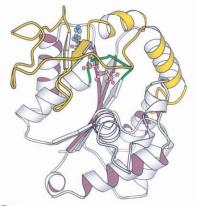
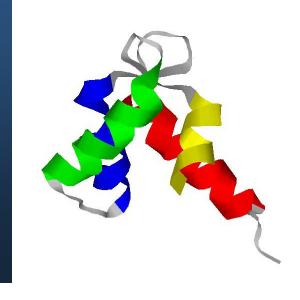

- X-ray structures can be misleading:
  - > appear static
  - subject to crystal-lattice artifacts

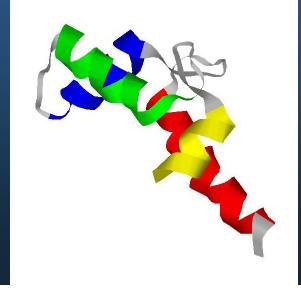
NMR PDB files often contain many structures consistent with data

1AK8.pdb (calcium-bound calmodulin) Note local fluctuations – e.g., helixfraying

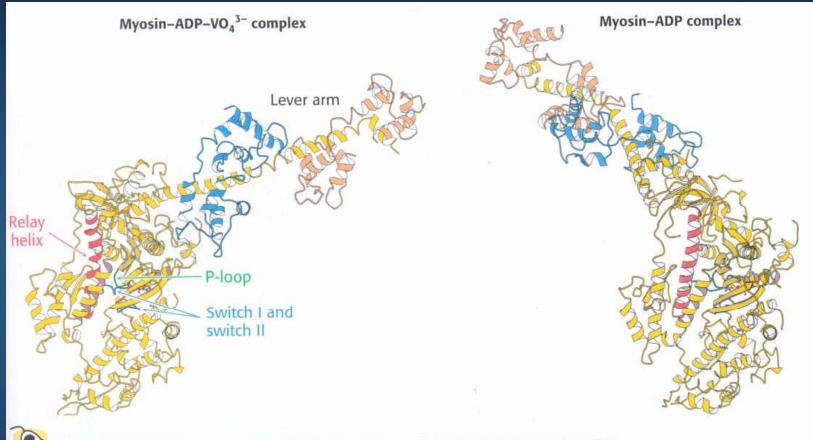


Berg]



FIGURE 9.51 Conformational changes in adenylate kinase. Large conformational changes are associated with the binding of ATP by adenylate kinase. The P-loop is shown in green in each structure. The lid domain is highlighted in yellow.

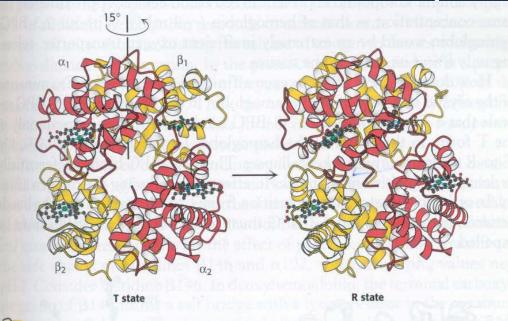
# Large Structural Changes


Example: "induced fit" in adenylate kinase upon ATP binding

# Example: re-arrangement of helices in calmodulin upon calcium binding



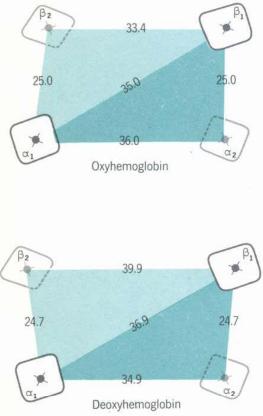



# Large Structural Changes: Myosin



**FIGURE 34.10 Lever-arm motion.** Two forms of the S1 fragment of scallop muscle myosin. Dramatic conformational changes are observed when the identity of the bound nucleotide changes from  $ADP-VO_4^{3-}$  to ADP or vice versa, including a nearly 90-degree reorientation of the lever arm.

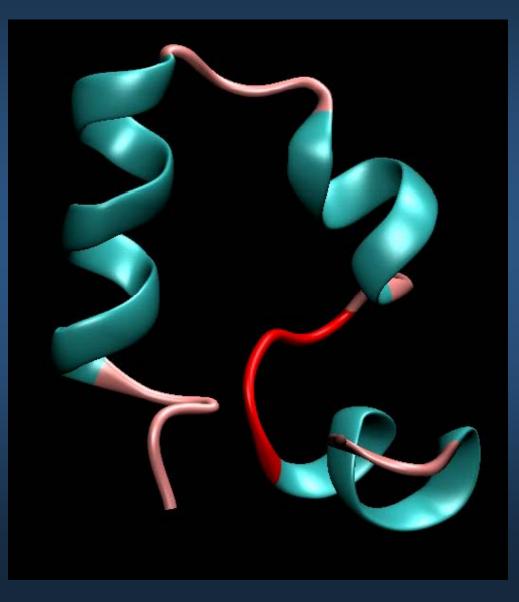
#### [Berg]


### Large Structural Changes: Allostery in Hemoglobin



**FIGURE 10.21 Transition from T to R state in hemoglobin.** On oxygenation, one pair of  $\alpha\beta$  subunits shifts with respect to the other by a rotation of 15 degrees.

#### [Berg]


Allostery example: when multiple ligands bind with differing affinities due to a change in conformation after initial binding event(s).



Relative motion of  $\alpha$  and  $\beta$  chains in the two states of hemoglobin. Distances between iron atoms are in Angstrom units. The hemes form a rough tetrahedron.

[Dickerson & Geis]

# A movie of villin headpiece



# Important mode in HIV-1 RT



### How/why does a molecule move?

Among the 3N-6 internal degrees of freedom, **bond rotations** (i.e. changes in dihedral angles) are the softest, and mainly responsible for the functional motions