Assay of ferrous sulphate

<u>AIM</u>: To perform the assay of the given sample of ferrous sulphate.

<u>APPARATUS:</u> burette, pipette, conical flask etc.

CHEMICALS: 0.1 N KMnO₄ solution, 0.1 N oxalic acid, dil. H₂SO₄, FeSO₄.

<u>PRINCIPLE</u>: Ferrous sulfate is an example of reducing agent and this titration is an example of redox titration. KMnO₄ is a powerful oxidant. In the presence of dil H2SO4 ferrous sulfate is oxidized to ferric sulfate. As soon as the oxidation of ferrous sulfate is completed addition of a drop of KMnO₄ produces permanent pink color which indicates the end point. No indicator is required as KMnO₄ is a self-indicator.

PROCEDURE:

- For standardization of 0.1 N KMnO₄ solution: Into a conical flask pipette out exactly10 ml of 0.1 N oxalic acid. Add 10 ml dil H₂SO₄ and boil the contents of the flask upto 70° C. Titrate the contents of the flask against 0.1 N KMnO₄ solution until a faint pink color is obtained. Repeat the titration to get concurrent values.
- For assay: weigh accurately about 1 gm of FeSO₄ and dissolve in 20 ml of dil H₂SO₄. Titrate against 0.1 N KMnO₄ solution till a permanent pink color is obtained. Repeat the titration to get concurrent values.

<u>I.P. FACTOR</u>: Each ml of 0.1 N KMnO₄ is equivalent to 0.0278 g of FeSO₄.

FORMULA:

% purity of $FeSO_4 = Vol. of 0.1 N KMnO_4 x I.P. Factor x 100 x N of KMnO_4 (actual)$

Weight of FeSO₄ x N of KMnO₄ (exp)

<u>RESULT</u>: The percentage purity of the given sample of FeSO₄ is