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Thus far, we have concentrated on the bending of shell
beams. However, in the general case a beam is subjected to:
« axial load, F
* bending moments, M
 shear forces, S
 torque (torsional moments), T

Figure 151 Examples of general aerospace shell beam structures
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|dealize the cross-section of the shell beam into two parts:

« Parts that carry extensional stress, oy (and thus the bending and
axial loads)

« Parts that carry shear stress o, (and thus the shear loads and
torques)

Two examples again...

« high aspect ratio wing with semi-monocoque construction

Notes:

« monocoque construction
« — all in one piece without internal framing
« — from French “coque” meaning “eggshell”
« — “mono” = one piece

e Semi-monocoque
— stressed skin construction with internal framework
— still have “eggshell” to carry shear stresses, oy
— internal framework to carry axial stress, oy

Paul A. Lagace © 2001 Unit15-3



MIT - 16.20 Fall, 2002

Figure 152 Representation of wing semi-monocoque construction

rib

web +
flanges = spar

—skin

web stiffeners

flanges

|dealize this section as:
Figure 153 ldealization of wing semi-monocoque construction
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— Skins and webs are assumed to carry only shear stress oys

— Flanges and stringers are assumed to carry only axial
stress oy«

« Space habitat

Figure 154 Representation of space habitat semi-monocoque
construction
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|dealize as for wing:
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Figure 155 ldealization of space habitat semi-monocoque construction
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— Quter skin and walls are assumed to carry only shear stress oys
— Flanges and stiffeners are assumed to carry only axial stress oy

Analyze these cross-sections as a beam under combined bending, shear,
and torsion. Utilize St. Venant assumptions:

1. There are enough closely spaced rigid ribs to preserve the shape
of the cross-section (or enough stiffness in the internal bracing to
do such)

2. The cross-sections are free to warp out-of-plane

Start to develop the basic equations by looking at the most basic case:

Paul A. Lagace © 2001 Unit15 -6



MIT - 16.20

Single Cell “Box Beam” |

Figure 156 Representation of geometry of single cell box beam

Tt

>3

modulus-weighted centroid of

4 flange and stiffener area used
as origin

Breakdown the problem...

(a) Axial Bending Stresses: Each flange/stiffener has some area
associated with it and it carries axial stress only (assume oy is
constant within each flange/stiffener area)
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The axial stress is due only to bending (and axial force if that exists --
leave at zero for now) and is therefore independent of the twisting since the
wing is free to warp (except near root -- St. Venant assumptions)

*Find M, S, T from statics at any cross-section x of the beam

Consider the cross-section:

Figure 157 Representation of cross-section of box beam

& & ?
E Area associated with
flange/stiffener i = A,
®- & o
e

Find the modulus-weighted centroid (Note: flange/stiffeners may be
made from different materials)

Paul A. Lagace © 2001
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Choose some axis system y, z (convenience says one might

use a “corner” of the beam)
Find the modulus-weighted centroid location:

Py
y*=ZTi*
Y

| oxzi
* I
z = n
2.
n

( Z = sum over number of flanges/stiffeners)

=1
: number = n

(Note: If flanges/stiffeners are made of the
same material, remove the asterisks)

* Find the moments of inertia with reference to the coordinate
system with origin at the modulus-weighted centroid

]y* _ ZJ i*Zl'*2
]Z* _ Z[ i*yl'*z

he = 2
Unit 15 - 9
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« Find the stresses in each flange by using the equation previously

developed:
E F' i
o, = ] - —E]fgy—E]ng—E]OCAT[
E] [] A ]

H_/
O for no axial force

(Will do an example of this in recitation)

(b) Shear stresses: assume the skins and webs are thin such that the
shear stress is constant through their thickness.

Use the concept of “shear flow” previously developed:
q = o,t [Forcel/length]

/!
shear I \ thickness

flow .
shear stress (called this the shear

resultant in the case of torsion)

Look at the example cross-section and label the “joints” and “skins”
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Figure 15.8 Representation of joints, skins, and shear flows in
cross-section of box beam
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Look at the equilibrium of joint (1):

Figure 159 Representation of skins and stringer and associated loads
and shear flows at joint (1)
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« The stringer only carries axial load
« The skin carries only shear flow

. The shear flow at the “end” of the skin (where it is
“cut”) must be the same as at the edge (the
cross-section cut). This is due to equilibrium
(Oxy = Oyx)

F
«  Apply equilibrium: Z =20

dP
> —P-I-P-I-d—dx-l-qldx—q(,dx:()
X

dP
> %'Q6:_$

More generally note that:
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1. Angle that skin comes into joint doesn’t matter since q along

edge is always in x-direction

Figure 15.10 Representation of skins at joint coming in at any angle
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\§ /-/
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dP

2. Stringer alone gives ax as its contribution
Figure 15.11 Representation of stringer isolated at joint
r
£
ped?
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3. If shear flows “into” joint, its contributions is in the negative x-
direction; if shear flows “out of’ joint, its contribution is in the

positive x-direction

Figure 15.12 Representation of shear flowing (left) into and (right) out of

joint

m

g
-

Adding all this up:

dP

E = Gin + Qour — O
_ar

= Yowr - Yin — — E

Use this in general
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For a more complicated joint, use superposition
Figure 1513 Representation of joint with multiple skins

L4

--> Need an expression for P -- start with:

P = Ao,
differentiating:
dP do dA
— = A + o —
dx dx dx
——

=0 since are considering stringers
with a uniform cross-section
Most general case:

Gour - qin = - A——==| Joint Equilibrium
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Consider a simpler case:
« I,=0 (symmetric section)

e M,=0
know that:
Myz
XX [V
dP d | Mz
2 — = 44— -
dx dx - Iy%
dp Az,
dx I, dx
Recall that:
dM,
= §, (shear resultant)
dx

Az = @, (moment of area about y)

So for this case, the joint equilibrium equation becomes:

Paul A. Lagace © 2001
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% « Symmetric section
]y ° MZ =0

Now have an equation for the equilibrium of shear stresses at the joints.
Shear stresses arise due to two reasons:

« Shear resultant
« Twisting

In general have at any cross-section:

®
NT
®

s,

It is convenient to break up the problem into two separate problems:
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(1) “Pure Shear” (2) “Pure Twist”

9—

x + mq-.e

1 o .
S,
+“— shear resultant acts

at shear center so
there is no twisting

¢ --> Solve each problem separately, then add the results (use
superposition)

Condition: The two force systems (S,, T and S, T’) must be
equipollent

Figure 1514 Demonstration of equipollence of force systems
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Define: d = distance from where shear resultant acts to shear center
ZF =same = S = S

ZT =same = T' - S.d=T

/

Q& careful: sign could be + or - depending upon
direction S, is moved!

Figure 15.15 Representation of positive and negative contribution of S,
to torque

Hint: Add up torques about line of S, action in each case.
They must be the same!
(= d has magnitude and sign)
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Solution procedure

Given: « section properties
 loading [T(x), Sz(x)]

Find: » shear stresses (flows) (n joints)
» shear center

= (n + 1) variables

1. Consider “Pure Shear” case

a) Apply joint equilibrium equation at each joint

Note: n joints will yield n-1 independent
equations. (one is dependent since the
section is closed)

b) Use Torque Boundary Condition

T _
Z internal ];pplied

This is torque equivalence, not equilibrium

Do this about the line of action of S,
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Then:
Ia{pplied — Szd

Z Tinternal = Z q;: (moment arm); (skin length),

c) Specified no twist (Pure Shear Case), so apply the No
Twist Condition

Recall from Torsion Theory:

§rds = 246 4%

dx

Here: d—azo
dx
and: Tzﬁ
t
> §1ds=o
[
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This gives:
a) n -1 equations
b) 1 equation
C) 1 equation
n + 1 equations for n + 1 variables

Solving these gives:
* q’s due to “Pure Shear” case
e d

--> when complete, check via:

> Internal Shear loads = Applied Shear
(Horizontal & vertical)

2. Consider “Pure Torsion” case

a) Apply joint equilibrium equation at each joint
Note: again, n joints give n-1 equations

Since no shear:
QOut - qin — O
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b) Use Torque Boundary Condition

Lo =T
Z internal ~ “‘applied

];pplied =T + or - Szd
?
found in part 1

This gives:

a) n -1 equations
b) 1 equation

 Need: naqg’s

> Solve these for g's due to “Pure Torsion” case

3. Sum results for “Pure Shear” and “Pure Torsion” cases

(could use g, gi': q; due to pure shear = g°
q: due to pure torsion = g;')
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Now have: shear flows .
(get shear stresses via: Txs = T)

location of shear center
(will be important to determine deflection)

(will go over sample problem of handout #6 in recitation)

for: Unsymmetric Shell Beams

« Cannot make simplifying assumptions (use equations
coupling bending in y and z)
« See handout #4B

Now that the stresses (due to bending, shear and torsion)
are determined, proceed to find the...
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SECTION PROPERTIES
a) Bending Stiffness, EI (as before)

[Z _ ZA *y2

I

= ZA*ZZ
I, = ZA*”

b) Shear Stiffness, GA  (have not done this before)

Consider the deflections Av and Aw for a segment Ax with only shear
forces Sy and S; acting at the shear center

Figure 15.18 Representation of shell beam segment with only shear
forces acting at the shear center
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Can express the shear flows in each member as contributions due to
Syand S;:

q(s)=ay(s)Sy+q:(s)S;
where:
q,(s) = shear flow due to S, of unit magnitude
q-(s) = shear flow due to S, of unit magnitude

--> To determine Av and Aw, it is best to use an Energy Method
It can be shown that:
1

v J(q_y)zds

t

1
4. = ——
€
_ |
) I T 4 ds

4
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c) Torsional Stiffness, GJ

Previously saw that:

da |

q .
it S N
I S 1c ¥ s (for closed section)

Let: (as just did)

g=4q(s)T
where:
g (s) = shear flow due to T of unit magnitude

Then, using this in the above:

daziggi

dx G247
Recalling:
da _ I
dx GJ Y |
> | J = —= (for closed section)
§ 9 s
4
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Summarizing, to find the deflections:

1. Obtain the section properties (El, GA, GJ) and the location of
the shear center

2. Decompose load into moments, shears at shear center, and
torque about shear center

3. Find (independently) bending, shearing, and twisting deflections
about line of shear centers (elastic axis)

4. Sum deflections to obtain total deflection

Figure 15.19

Paul A. Lagace © 2001



