OXIDATION OF FATTY ACIDS

1.Beta- Oxidation
 2.Minor fatty acid oxidation

 Alpha oxidation
 Omega oxidation

 Peroxisomal beta oxidation

Major and minor fatty acid

oxidation

• Major oxidation:

Mitochondrial beta oxidation

- Minor Oxidation:
- Alpha oxidation

Omega oxidation

Peroxisomal Beta oxidation

Beta-Oxidation

- Beta -oxidation is defined as the oxidation and splitting of two carbon units at beta carbon atom.
- This results in sequential removal of 2 carbon fragments as **acetyl CoA** until the complete oxidation of fatty acids.
- Beta oxidation occurs almost in all tissues except, erythrocytes and adrenal medulla.

Stages of beta-oxidation

Three major steps involved :

- 1. Preparative stage (Activation of fatty acid) occurs in cytosol.
- 2. Transport of fatty acyl CoA through carnitine shuttle, present in mitocondrial membrate
- 3. Beta oxidation proper in mitochondrial matrix.

Activation of fatty acid

Activation occurs in Cytosol

LCFA requires *carnitine shuttle* for transport into mitochondrial menbrane SCFA/MCFA do not require *carnitine suttle*

Transport of Fatty acyl CoA

Beta oxidation proper

Beta oxidation proper occurs in **mitochondrial matrix and involves 4 steps**:

- 1. Oxidation
- 2. Hydration
- 3. Oxidation
- 4. Cleavage

Steps of Beta-oxidation proper

Inner Mitochondrial Membrane

FORMULA FOR CALCULATING ENERGETICS

FOR EVEN CHAIN FATTY ACID

- n= Number of carbon atoms present in fatty acid Number of acetyl CoA produced = n/2Number of cycles for fatty acids= (n/2 - 1)Number of reduced coenzyme = (n/2-1) (FADH₂ +NADH)
- For example if 16C (palmitic acid) undergoes beta oxidation
 No. of acetyl CoA produced= 8 {1 Acetyl CoA = 12 ATP in TCA}
 8×12= 96 ATPs
- No.of cycles for palmitic acid= 7
- No.of reduced coenzymes produced= 7(FADH2 + NADH)

7(2+3)= 35 ATPs

- Total no. of ATPs produced= 96+35= 131 ATPs
- > No. of ATPs utilized during activation= 2 ATPs
- Net gain= 131-2= 129 (ATPs According to old energeitcs concept)

FORMULA FOR CALCULATING ENERGETICS FOR

ODD CHAIN FATTY ACID

- No. of acetyl coA produced= (n-3)/2
- No. of Cycles =(n-3)/2
- No. of reduced coenzymes= (n-3)/2[FADH2+NADH]
- Remaining 3C is **propionyl CoA**

For example if 17c fatty acid undergoes beta oxidation

No. of acetyl CoA = 7 { 1 acetylCoA= 12 ATPin TCA}

7×12=84 ATPs

No.of Cycles= 7

No. of reduced coenzymes= 7(FADH2+ NADH)

7(2+3)= 35ATPs

Total no. of ATPs produced= 84+35= 119ATPs

No. of ATPs utilized for activation=2 ATPs

Net gain= 119-2= 117 ATPs

Remaining 3C compound is propionyl CoA which converts to succinyl CoA and ebters TCA cycel

β- Oxidation for odd chain fatty acid

 Beta oxidation for odd chain fatty acid occurs in the same way as for even chain fatty acid except the cleavage step yields *propionyl CoA* and *Acetyl CoA*

Regulation of beta-oxidation

- Increased availability of FFA increases the rate of beta oxidation
- Glucagon increases FFA and Insulin decreases FFA
- CAT-I is inhibited by Malonyl CoA(substrate for fatty acid synthesis). Thus during denovo synthesis of fatty acid beta oxidation is inhibited

Minor Fatty acid Oxidation

Alpha Oxidation

Omega Oxidation

Peroxisomal Beta Oxidation

Alpha - oxidation

- Defined as the oxidation of fatty acid (methyl group at beta carbon) with the removal of one carbon unit adjacent to the α carbon from the carboxylic end in the form of CO2
- Alpha oxidation occurs in those fatty acids that have a methyl group(CH3) at the beta-carbon, which blocks beta oxidation.
- <u>Substrate:-Phytanic acid</u>, which is present in milk or derived from phytol present in chlorophyll and animal fat
- **peroxisomes** is the cellular site.
- No production of ATP

Steps of alpha oxidation

- **1**. Activation of phytanic acid
- 2. Hydroxylation
- **3.** Removal of formyl CoA(CO₂)
- **4.** Oxidation of Pristanal
- **5.** Beta-oxidation of pristanic acid

Pristanic acid undergoes beta oxidation

Pristanic acid Activation Beta oxidation proper

2- methyl propionyl CoA+ 3Acetyl CoA+ 3 Propionyl CoA

Significance of alpha oxidation

- Oxidation of methylated fatty acid
- Production of cerebronic acid which synthesizes cerebroside and sulfatides
- Production of odd chain fatty acids

Adult Refsum's Disease

Biochemical defect

- Defect in enzyme phytanoyl CoA hydroxylase(Phytanic acid oxidase)
- Autosomal reccesive
- Phytanic acid is acumulated in brain and other tissue

lab Findings

Plasma Level of phytanic acid > 200µmol/L

Normal< 30µmol/L

Infantile Refsum's Disease

Biochemical defect

It is a disorder observed in zellweger syndrome. Congenital peroxisomal biogenesis disorder

Lab findings

- Phytanic acid in the serum is More than 30µmol/L and less than 200µmol/L
- **2.** VLCFA and LCFA in serum is increased

Molecular Toxicology of Refsum's Disease

- PA is directly toxic to ciliary ganglion cells and induces calcium –driven apoptosis in purkinji cells
- Recent studies has found that PA has a Rotenone like action in inhibiting complex –I and producing reactive oxygen species
- This is the reason why neuronal cells and retina rich in mitochondria are prime tissue affected in Refsum's disease

Refsum's Disease

• Clinical manifestations

Severe neurological symptoms such as

- Polyneuropathy,
- ✓ retinitis pigmentosa,
- ✓ Nerve deafness
- Cerebellar ataxia

Patients should avoid intake of diet such as green vegetables and milk.

Omega(w) Oxidation

- Cellular site: Endoplasmic reticulum
- oxidation occurs at (ω-omega) carbon—the carbon most distant from the carboxyl group.
- Substrates : Medium and long chain fatty acid
- **Importance**: It is a minor pathway but becomes active when **beta oxidation is defective**.
- The product formed are di-carboxylic acid

Peroxisomal Beta Oxidation

- <u>Beta oxidation</u> occurs in modified form in peroxisomes.
- Very Long chain fatty acids (>C22) are often oxidized in peroxisomes.
- FADH₂ produced by the action of **Acycl CoA dehydrogenases** pass electrons **directly to oxygen**.
- This results in formation of **H2O2**.
- H2O2 is again cleaved by peroxisomal catalase.
- Subsequent steps are identical with their mitochondrial counterparts.
- They are carried out by different isoform of the enzymes.

Initial step of Peroxisomal beta oxidation

Zellweger syndrome

- Biochemical defect
- Defect in the gene for peroxisome biogenesis
- reduction or absence of Peroxisomes in the cells of the liver, kidneys, and brain.
- VLCFA and LCFA are not oxidized and accumulates in tissue, particularly in brain, liver and kidney.
 Lab findings:
- Increased level of VLCFA in serum
- Increased level of phytanic acid in serum

Medium chain acylCoA dehydrogenase deficiency (MCAD deficiency)

- Most common inborn error of **fatty acid oxidation**.
- Being found in 1:14,000 births worldwide.
- Decreased ability to oxidize fatty acids with six to ten carbons.
- MCFA accumulates in tissue and also excreted in urine.

Symptoms: Hypoglycemia Sleepiness Vomiting Fat accumulation in liver Deficiencies of Carnitine or carnitine transferase or carnitine translocase

Causes:

- Deficiency of carnitine
- Inherited **CPT-I deficiency affects only the liver.**
- **CPT-II deficiency affects primarily** skeletal muscle and, when severe, the liver.

Symptoms:

- muscle cramps are precipitated by fasting, exercise and high fat diet.
- Hypoglycemia

Jamaican vomiting sickness

- Caused by eating unripe ackee fruit which contains unusal toxic amino acids hypoglycin A and B
- It inhibits enzyme acyl CoA dehydrogenase.
- Beta-oxidation is blocked leading to serious complications.
- Symptoms : Severe hypoglycemia vomiting Convulsions
 Coma

Ackee fruit