Kuby, Ch. 12 CYTOKINES

April 2013

Cytokines

 Low-molecular weight regulatory proteins or glycoproteins

- IL-2R\(\alpha\)
 IL-2R\(\beta\)
 IL-2R\(\beta\)
 (Chapter 12 Opener
 (Key) MMUNGLOG'S Staft Edition
- Secreted by WBC and various other cells
- Assist in regulating development of immune effector cells
 - Some possess direct effector functions of their own
- Referred to as Interleukins
 - IL-1 through IL-29 have been described

- Cytokines bind to specific receptors on outside
- Inside: Trigger signal transduction pathways that alter gene expression in target cells
- HOW?
- Exhibit pleiotropy, redundancy, synergy, antagonism, cascade induction

Paracrine action Nearby cell

Endocrine action

Distant cell

Figure 12-1b

Kuby IMMUNOLOGY, Sixth Edition

© 2007 W. H. Freeman and Company

- Activity was 1st recognized in 1960s
 - Supernatants from in vitro cultures of lymphocytes were found to contain soluble factors
 - Could regulate proliferation, differentiation, maturation of immune cells
 - Purification of these was hampered because of low concentration in culture
 - Gene-cloning techniques changed this made it possible to produce pure cytokines

ELISA using monoclonal antibodies

Figure 12-3a

Kuby IMMUNOLOGY, Sixth Edition

© 2007 W. H. Freeman and Company

Cytokines belong to 4 families

- Hematopoietin family
- Interferon family
- Chemokine family
- Tumor necrosis family

- Based on structural studies
- All have molecular mass less than (<) 30kDa
- All have similarities and few rarely act alone

Cytokine promotion of activation, differentiation, proliferation, or cell death of T cells, B cells, macrophages, dendritic cells, NK cells, and other leukocytes.

Figure 12-5

Kuby IMMUNOLOGY, Sixth Edition
© 2007 W. H. Freeman and Company

PHYSIOLOGIC RESPONSES OF CYTOKINES

- Development humoral and cellular immune responses
- Induction of inflammatory response
- Regulation of hematopoesis
- Control of cell proliferation and differentiation
- Healing of wounds

Their action is not antigen specific but the process that created them initially was antigen specific

SOME CYTOKINE ACTIVITIES

SPECIFIC OR NOT?

Cytokine [†]	Secreted by [‡]	Targets and effects
	SOME CYTOKINES O	F INNATE IMMUNITY
Interleukin 1 (IL-1)	Monocytes, macrophages, endothelial cells	Vasculature (inflammation); hypothalamus (fever); liver (induction of acute phase proteins)
Tumor necrosis factor-α (TNF-α)	Macrophages	Vasculature (inflammation); liver (induction of acute phase proteins); loss of muscle, body fat (cachexia); induction of death in many cell types; neutrophil activation
Interleukin 12 (IL-12)	Macrophages, dendritic cells	NK cells; influences adaptive immunity (promotes T _H 1 subset)
Interleukin 6 (IL-6)	Macrophages, endothelial cells	Liver (induces acute phase proteins); influences adaptive immunity (proliferation and antibody secretion of B cell lineage)
Interferon α (IFN-α) (this is a family of molecules)	Macrophages	Induces an antiviral state in most nucleated cells; increases MHC class I expression; activates NK cells
Interferon β (IFN-β)	Fibroblasts	Induces an antiviral state in most nucleated cells; increases MHC class I expression; activates NK cells
	SOME CYTOKINES OF	ADAPTIVE IMMUNITY
Interleukin 2 (IL-2)	T cells	T-cell proliferation; can promote AICD. NK cell activation and proliferation; B-cell proliferation
Interleukin 4 (IL-4)	T _H 2 cells, mast cells	Promotes T _H 2 differentiation; isotype switch to IgE
Interleukin 5 (IL-5)	T _H 2 cells	Eosinophil activation and generation
Transforming growth factor β (TGF-β)	T cells, macrophages, other cell types	Inhibits T-cell proliferation and effector functions; inhibits B-cell proliferation; promotes isotype switch to IgA; inhibits macrophages
Interferon γ (IFN-γ)	T _H 1 cells, CD8 ⁺ cells, NK cells	Activates macrophages; increases expression MHC class I and class II molecules; increases antigen presentation

^{*}Many cytokines play roles in more than one functional category.

[†]Only the major cell types providing cytokines for the indicated activity are listed; other cell types may also have the capacity to synthesize the given cytokine.

[‡]Also note that activated cells generally secrete greater amounts of cytokine than unactivated cells.

- Non-specificity of cytokines conflicts with established specificity of immune system
 - How does this work?
 - Careful expression of the <u>receptors</u> for those cytokines on specific cells
 - Receptors are often only expressed after exposure to antigen

TOPIC CHANGE: Cytokine Receptors

- Cytokine receptors fall into 5 families
 - Immunoglobulin superfamily receptors
 - Class I cytokine receptor family (hematopoietin)
 - Class II cytokine receptor family (interferon)
 - TNF receptor family
 - Chemokine receptor family

LIGANDS

Immunoglobulin superfamily receptors

IL-1 M-CSF C-Kit IL-18

Figure 12-6a
Kuby IMMUNOLOGY, Sixth Edition
© 2007 W. H. Freeman and Company

Class I cytokine receptors (hematopoietin)

Figure 12-6b Kuby IMMUNOLOGY, Sixth Edition © 2007 W. H. Freeman and Company

LIGANDS

IL-2	IL-21
IL-3	IL-23
IL-4	IL-27
IL-5	GM-CSF
IL-6	G-CSF
IL-7	OSM
II -9	LIF

IL-11 CNTF

IL-12 Growth hormone

Prolactin IL-13

IL-15

LIGANDS

Class II cytokine receptors (interferon)

Figure 12-6c

Kuby IMMUNOLOGY, Sixth Edition

© 2007 W. H. Freeman and Company

IFN-α IFN-β IFN-γ **IL-10 IL-19 IL-20 IL-22 IL-24 IL-26 IL-28 IL-29**

LIGANDS

TNF receptors

TNF-α
TNF-β
CD27L
CD30L
CD40L
Nerve growth factor (NGF)
FAS

Figure 12-6d
Kuby IMMUNOLOGY, Sixth Edition
© 2007 W. H. Freeman and Company

RECEPTOR FAMILY Chemokine receptors

IL-8
RANTES
MIP-1
PF4
MCAF
NAP-2

Figure 12-6e
Kuby IMMUNOLOGY, Sixth Edition
© 2007 W. H. Freeman and Company

HOMEWORK QUESTION 1

WHAT IS THE DIFFERENCE BETWEEN CLASS 1 AND CLASS 2 CYTOKINE RECEPTORS

and

IMMUNOGLOBULIN, TNF, AND CHEMOKINE RECEPTORS?

Due Friday, beginning of class

Class I cytokine receptors (hematopoietin)

Figure 12-6b
Kuby IMMUNOLOGY, Sixth Edition
© 2007 W. H. Freeman and Company

LIGANDS

IL-2	IL-2	
II -3	II _23	

IL-4 IL-27

IL-5 GM-CSF

IL-6 G-CSF

IL-7 OSM

IL-9 LIF

IL-11 CNTF

IL-12 Growth hormone

IL-13 Prolactin

IL-15

RECEPTOR FAMILY

LIGANDS

Immunoglobulin superfamily receptors

IL-1 M-CSF C-Kit IL-18

Figure 12-6a
Kuby IMMUNOLOGY, Sixth Edition
© 2007 W. H. Freeman and Company

RECEPTOR FAMILY

Class II cytokine receptors (interferon)

Figure 12-6c
Kuby IMMUNOLOGY, Sixth Edition
© 2007 W.H. Freeman and Company

LIGANDS

IFN-α IFN-β IFN-γ

IL-10 IL-19

IL-20

IL-22 IL-24

IL-26

IL-28

IL-29

RECEPTOR FAMILY

TNF receptors

Figure 12-6d
Kuby IMMUNOLOGY, Sixth Edition
© 2007 W.H. Freeman and Company

LIGANDS

TNF-α TNF-β CD27L CD30L

CD40L

Nerve growth factor (NGF)

FAS

- IL-2R is the most thoroughly studied cytokine receptor
 - Expressed by T cells for proliferation
 - Also called CD25, surface marker in mature T cells
 - Complete receptor has 3 subunits

Subunit

composition: IL-2Rβ IL-2Rα

IL-2Rα

IL-2Rγ

IL-2Rβ

IL-2Rγ

Dissociation

 $10^{-9}\,{\rm M}$ constant (K_d):

 $10^{-11}\,\mathrm{M}$

 $10^{-8}\,{\rm M}$

Cells

NK cells expressed by:

Resting T cells (low numbers)

Activated CD4+ and CD8+ T cells

Activated B cells (low numbers)

Figure 12-9a Kuby IMMUNOLOGY, Sixth Edition © 2007 W. H. Freeman and Company

Majority of cytokine receptors are in Class I and Class II families

- These cytokine receptors lack signaling motifs, this was puzzling to researchers
- IFN-γ (Class II) was studied because of it's ability to block viral replication like other interferons
 - » However, this IFN plays immunoregulatory role which leads to understanding the process of signal transduction through cytokine receptors
 - » Look on next slide

Signaling pathway of cytokine receptor

- Cytokine receptor is composed of separate subunits
- Different inactive protein tyrosine kinases associated with different subunits
 - Look at blue circles associated with receptor
- Cytokine binding induces association of 2 separate receptor subunits (α and β) and activates receptor associated JAK
- 4. Activated JAKs create docking sites for the STAT transcription factors by phosphorylation
- 5. STAT transcription factors translocate from receptor docking sites at the membrane to the nucleus, activate transcription of genes

Figure 12-10
Kuby IMMUNOLOGY, Sixth Edition
2007 W. H. Freeman and Company

Cytokine Antagonists

- Number of proteins can inhibit cytokine activity
 - Can bind to receptor OR
 - Can bind to cytokine, disabling it
 - Enzymatic cleavage of receptors and release of these can bind cytokines in the blood
 - Marker of chronic T cell activation (transplant rejection, AIDS)
- Viruses have developed strategies using their genomic information
 - Cytokine homologs
 - Cytokine binding proteins
 - Homologs of cytokine receptors
 - Interference with intracellular signaling
 - Interference with cytokine secretion

TABLE 12-3

Viral mimics of cytokines and cytokine receptors

Virus	Products
Leporipoxvirus (a myxoma virus)	Soluble IFN-γ receptor
Several poxviruses	Soluble IFN-γ receptor
Vaccinia, smallpox virus	Soluble IL-1β receptor
Epstein-Barr	IL-10 homolog
Human herpesvirus-8	IL-6 homolog; also homologs of the chemokines MIP-I and MIP-II
Cytomegalovirus	Three different chemokine receptor homologs, one of which binds three different soluble chemokines (RANTES, MCP-1, and MIP-1α)

TWO TH CELL SUBSETS

CD4+ T_H cells exert most of helper functions through secreted cytokines

- 2 populations based on secreted cytokines:
 - $-T_H1$
 - Cell-mediated functions delayed hypersensitivity, activation of T_C cells, production of opsonization-promoting IgG antibodies
 - Promote excessive inflammation and tissue injury
 - IFN-γ, TNF-β, IL-2

$-T_H2$

- Stimulates eosinophil activation, provides help to B cells, promotes production of large amounts of IgM, IgE, and noncomplement activating IgG isotypes
- Supports allergic reactions
- IL-4, IL-5

TWO T_H CELL SUBSETS

- Some T_H cells do not show T_H1 or T_H2 profiles
- Specific for type of antigenic challenge
- Both secrete IL-3 and GM-CSF

Cytokine secretion and principal functions of mouse T_HI and T_H2 subsets **TABLE 12-4** T_H1 T_H2 **CYTOKINE SECRETION** IL-2 + ++ IFN-γ TNF-β ++ GM-CSF ++ + IL-3 ++ ++ IL-4 ++ IL-5 ++ IL-10 ++ IL-13 ++ **FUNCTIONS** Help for total antibody production ++ + Help for IgE production ++ Help for IgG2a production ++ Eosinophil and mast-cell production ++ Macrophage activation ++ Delayed-type hypersensitivity ++ T_c-cell activation ++ SOURCE: Adapted from F. Powrie and R. L. Coffman, 1993, Immunology Today 14:270.

Table 12-4 *Kuby IMMUNOLOGY, Sixth Edition*© 2007 W. H. Freeman and Company

- Cytokines produced by T_H1 and T_H2 subsets
 - Promote growth of subset that produces them
 - Inhibit development and activity of other subset
 - T_H1 > intracellular pathogens
 - T_H2 > allergic diseases and helminth infections
 - Progression of some diseases depends on balance between T_H1 and T_H2: leprosy, AIDS
 - Intracellular pathogens use immune evasion to change the T_H1 -T_H2 balance

CROSS-REGULATION

IDENTIFY POINTS OF POSITIVE AND NEGATIVE FEEDBACK

Gene Knock-outs:

Stat1: IL-12 <<<

Stat6: IL-4 <<<

CROSS-REGULATION

Stat1: T-bet

Stat6: GATA-3

T_{reg}: ANOTHER CD4⁺ T CELL

• IL-4, IL-10, TGF-β

Cytokine Related Diseases

- SCID (Severe Combined Immunodeficiency Disease)
 - Genetic defects in cytokines, their receptors
- Defective receptor for IFN-γ
 - Susceptible to mycobacterial infections
- Over or under expression of cytokines or cytokine receptors

Cytokine Related Diseases

- Bacterial Septic Shock
 - Certain Gram- bacteria
 - Symptoms: drop in blood pressure, fever, diarrhea, blood clotting
 - Endotoxins bind TLRs on dendritic cells and macrophages
 - Over-produce IL-1 and TNF-α
 - Cytokine imbalance causes abnormal temp, abnormal respiration, capillary leakage, tissue injury, organ failure
 - Neutralization by monoclonal antibodies may help

Cytokine Related Diseases

- Bacterial Toxic Shock
 - Superantigens
 - Bind simultaneously to Class II MHC and T cell receptor, activating T cell despite antigenic specificity
 - Symptoms similar to sepsis

Cytokine Related Diseases!!

- Abnormalities in production of cytokines or receptors are associated with certain types of cancer
- Chagas Disease
 - Caused by Trypanosoma cruzi
 - Severe immunosuppression
 - Evidence that soluble factor produced by *T. cruzi* leads to reduction (90%) in T cell IL-2 (CD25) receptor

Cytokine-based Therapies

- Problems with cytokine therapies:
 - Effective dose levels
 - Short half-life
 - Potent biological response modifiers
 - Can cause unpredictable side effects

Hematopoietic growth factor	Sites of production	Main functions
Erythropoietin	Kidney, liver	Erythrocyte production
G-CSF	Endothelial cells, fibroblasts, macrophages	Neutrophil production
Thrombopoietin	Liver, kidney	Platelet production
M-CSF	Fibroblasts, endothelial cells, macrophages	Macrophage and osteoclast production
SCF/c-kit ligand	Bone marrow stromal cells, constitutively	Stem cell, progenitor cells survival/division; mast cell differentiation
Flt-3 ligand	Fibroblasts, endothelial cells	Early progenitor cell expansion; pre-B cells
GM-CSF	T cells (T _H 1 and T _H 2), macrophages, mast cells	Macrophage, granulocyte production; dendritic cell maturation and activation
IL-3	T cells (T _H 1 and T _H 2), macrophages	Stem cells and myeloid progenitor cell growth; mast cells
IL-5	Activated helper, T cells—T _H 2 response only	Eosinophil production; murine B-cell growth
IL-6	Activated T cells, monocytes, fibroblasts, endothelial cells	Progenitor-cell stimulation; platelet production; immunoglobulin production in B cells
IL-7	Bone marrow and lymphoid stromal cells	T-cell survival
IL-11	Bone marrow stromal cells and IL-1-stimulated fibroblasts	Growth factor for megakaryocytes

Table 12-5
Kuby IMMUNOLOGY, Sixth Edition
© 2007 W. H. Freeman and Company

Encyclopedia of Life Sciences: Haematopoietic growth factors, Nature Publishing Group.

Cytokine-based therapies in clinical use				
Agent	Nature of agent	Clinical application		
Enbrel	Chimeric TNF-receptor/lgG constant region	Rheumatoid arthritis		
Remicade or Humira	Monoclonal antibody against TNF- α receptor	Rheumatoid arthritis Crohn's disease		
Roferon	Interferon α-2a*	Hepatitis B Hairy-cell leukemia Kaposi's sarcoma		
Intron A	Interferon α-2b	Hepatitis C [†] Melanoma		
Betaseron	Interferon β–1b	Multiple sclerosis		
Avonex	Interferon β–1a	Multiple sclerosis		
Actimmune	Interferon γ–1β	Chronic granulomatous disease (CGD) Osteopetrosis		
Neupogen	G-CSF (hematopoietic cytokine)	Stimulates production of neutrophils Reduction of infection in cancer patients treated with chemotherapy, AIDS patients		
Leukine	GM-CSF (hematopoietic cytokine)	Stimulates production of myeloid cells after bone marrow transplantation		
Neumega or Neulasta	Interleukin-11 (IL-11), a hematopoietic cytokine	Stimulates production of platelets		
Epogen	Erythopoietin (hematopoietic cytokine)	Stimulates red-blood-cell production		

^{*}Interferon α -2a is also licensed for veterinary use to combat feline leukemia.

[†]Normally used in combination with an antiviral drug (ribavirin) for hepatitis C treatment.

Cytokines play essential role in hematopoiesis

