ELECTRONIC DEVICES AND CIRCUIT THEORY

TENTH EDITION

Chapter 10: Operational Amplifiers

BOYLESTAD

Operational amplifier or op-amp, is a very high gain differential amplifier with a high input impedance (typically a few meg-Ohms) and low output impedance (less than 100 Ω).

Note the op-amp has two inputs and one output.

Op-Amp Gain

Op-Amps have a very high gain. They can be connected open-loop or closed-loop.

- **Open-loop** refers to a configuration where there is no feedback from output back to the input. In the open-loop configuration the gain can exceed 10,000.
- Closed-loop configuration reduces the gain. In order to control the gain of an op-amp it must have feedback. This feedback is a negative feedback. A negative feedback reduces the gain and improves many characteristics of the op-amp.

Inverting Op-Amp

- The signal input is applied to the inverting (-) input
- The non-inverting input (+) is grounded
- The resistor R_f is the feedback resistor. It is connected from the output to the negative (inverting) input. This is *negative feedback*.

Inverting Op-Amp Gain

Gain can be determined from external resistors: R_f and R₁

$$\mathbf{A}_{\mathbf{v}} = \frac{\mathbf{V}_{\mathbf{o}}}{\mathbf{V}_{\mathbf{i}}} = \frac{\mathbf{R}_{\mathbf{f}}}{\mathbf{R}_{\mathbf{1}}}$$

Unity gain—voltage gain is 1

$$R_{f} = R_{1}$$
$$A_{v} = \frac{-R_{f}}{R_{1}} = -1$$

The negative sign denotes a 180° phase shift between input and output.

Constant Gain—R_f is a multiple of R₁

Virtual Ground

An understanding of the concept of virtual ground provides a better understanding of how an opamp operates.

The *non-inverting* input pin is at ground. *The inverting* input pin is also at 0 V for an AC signal.

The op-amp has such high input impedance that even with a high gain there is no current from inverting input pin, therefore there is no voltage from inverting pin to ground—all of the current is through R_f.

Practical Op-Amp Circuits

Inverting amplifier Noninverting amplifier Unity follower Summing amplifier Integrator Differentiator

Inverting/Noninverting Op-Amps

Inverting Amplifier

Noninverting Amplifier

Unity Follower

Summing Amplifier

Because the op-amp has a high input impedance, the multiple inputs are treated as separate inputs.

$$\mathbf{V}_{0} = -\left(\frac{\mathbf{R}_{f}}{\mathbf{R}_{1}}\mathbf{V}_{1} + \frac{\mathbf{R}_{f}}{\mathbf{R}_{2}}\mathbf{V}_{2} + \frac{\mathbf{R}_{f}}{\mathbf{R}_{3}}\mathbf{V}_{3}\right)$$

Integrator

The output is the integral of the input. Integration is the operation of summing the area under a waveform or curve over a period of time. This circuit is useful in lowpass filter circuits and sensor conditioning circuits.

circuits.
$$v_0(t) = -\frac{1}{RC} \int v_1(t) dt$$

PEARSON

Differentiator

The differentiator takes the derivative of the input. This circuit is useful in high-pass filter circuits.

$$\mathbf{v_0}(t) = -\mathbf{R}\mathbf{C}\frac{\mathbf{d}\mathbf{v_1}(t)}{\mathbf{d}t}$$

Op-Amp Specifications—DC Offset Parameters

Even when the input voltage is zero, there can be an output offset. The following can cause this offset:

- Input offset voltage
- Input offset current
- Input offset voltage *and* input offset current
- Input bias current

Input Offset Voltage (V_{IO})

The specification sheet for an op-amp indicate an input offset voltage (V_{IO}).

The effect of this input offset voltage on the output can be calculated with

$$\mathbf{V}_{\mathbf{o}(\mathbf{offset})} = \mathbf{V}_{\mathbf{IO}} \, \frac{\mathbf{R}_1 + \mathbf{R}_f}{\mathbf{R}_1}$$

Output Offset Voltage Due to Input Offset Current (I_{IO})

If there is a difference between the dc bias currents for the same applied input, then this also causes an output offset voltage:

- The input offset Current (I_{IO}) is specified in the specifications for the op-amp.
- The effect on the output can be calculated using:

 $V_{o(offset due to I_{IO})} = I_{IO}R_{f}$

Total Offset Due to V_{IO} and I_{IO}

Op-amps may have an output offset voltage due to both factors V_{IO} and I_{IO} . The total output offset voltage will be the sum of the effects of both:

 $V_o(offset) = V_o(offset due to V_{IO}) + V_o(offset due to I_{IO})$

Input Bias Current (I_{IB})

A parameter that is related to input offset current (I_{IO}) is called input bias current (I_{IB})

The separate input bias currents are:

$$I_{IB}^{-} = I_{IB} - \frac{I_{IO}}{2}$$
 $I_{IB}^{+} = I_{IB} + \frac{I_{IO}}{2}$

The total input bias current is the average:

$$\mathbf{I_{IB}} = \frac{\mathbf{I_{IB}}^- + \mathbf{I_{IB}}^+}{2}$$

Frequency Parameters

An op-amp is a wide-bandwidth amplifier. The following affect the bandwidth of the op-amp:

- Gain
- Slew rate

Gain and Bandwidth

The op-amp's high frequency response is limited by internal circuitry. The plot shown is for an open loop gain (A_{OL} or A_{VD}). This means that the op-amp is operating at the highest possible gain with no feedback resistor.

In the open loop, the op-amp has a narrow bandwidth. The bandwidth widens in closedloop operation, but then the gain is lower.

Slew Rate (SR)

Slew rate (SR) is the maximum rate at which an op-amp can change output without distortion.

$$\mathbf{SR} = \frac{\Delta \mathbf{V_o}}{\Delta t} \quad (\text{in V}/\mu s)$$

The SR rating is given in the specification sheets as V/µs rating.

Maximum Signal Frequency

The slew rate determines the highest frequency of the op-amp without distortion.

$$\mathbf{f} \leq \frac{\mathbf{SR}}{2\pi \mathbf{V_p}}$$

where V_P is the peak voltage

General Op-Amp Specifications

Other ratings for op-amp found on specification sheets are:

- Absolute Ratings
- Electrical Characteristics
- Performance

Absolute Ratings

These are common maximum ratings for the op-amp.

Absolut	te Maximum
Ratings	
Supply voltage	6 22 V
nternal power dissipation	500 mW
Differential input voltage	6 30 V
nput voltage	6 15 V

Electrical Characteristics

TABLE 13.2 mA741 Electrical Characteristics: $V_{CC} = \pm 15$ V, $T_A = 25^{\circ}C$					
Characteristic	MIN	TYP	MAX	Unit	
V _{IO} Input offset voltage		1	6	mV	
I _{IO} Input offset current		20	200	nA	
I _{IB} Input bias current		80	500	nA	
V _{ICR} Common-mode input voltage range	±12	±13		v	
V _{OM} Maximum peak output voltage swing	±12	±14		v	
AvD Large-signal differential voltage amplification	20	200		V/mV	
r _i Input resistance	0.3	2		MΩ	
r _o Output resistance		75		Ω	
C _i Input capacitance		1.4		pF	
CMRR Common-mode rejection ratio	70	90		dB	
I _{CC} Supply current		1.7	2.8	mA	
P_D Total power dissipation		50	85	mW	

Note: These ratings are for specific circuit conditions, and they often include minimum, maximum and typical values.

CMRR

One rating that is unique to op-amps is CMRR or common-mode rejection ratio.

Because the op-amp has two inputs that are opposite in phase (inverting input and the non-inverting input) any signal that is common to both inputs will be cancelled.

Op-amp CMRR is a measure of the ability to cancel out common-mode signals.

Op-Amp Performance

The specification sheets will also include graphs that indicate the performance of the op-amp over a wide range of conditions.

