ELECTRONIC DEVICES AND CIRCUIT THEORY

TENTH EDITION

Chapter 11Op-Amp Applications

BOYLESTAD

Op-Amp Applications

Constant Constant-gain multiplier gain Voltage summingVoltage buffer Controlled sources Instrumentation circuitsActive filters

$\bf Constant\text{-}Gain Amplifier$

more…

$\bf Constant\text{-}Gain Amplifier$

Multiple Multiple-Stage Gains Stage

The total gain (3-stages) is given by:

 $A = A_1 A_2 A_3$

or

$$
A = \left(1 + \frac{R_f}{R_1}\right)\left(-\frac{R_f}{R2}\right)\left(-\frac{R_f}{R3}\right)
$$

Voltage Summing

The output is the sum of individual signals times the gain:

$$
V_0 = -\left(\frac{R_f}{R_1}V_1 + \frac{R_f}{R_2}V_2 + \frac{R_f}{R_3}V_3\right)
$$

[Formula 14.3]

Voltage Buffer

Any amplifier with no gain or loss is called a unity gain amplifier.

The advantages of using a unity gain amplifier:

- •**Very high input impedance**
- **Very low output impedance**

Realistically these circuits are designed using equal resistors $(\mathbf{R}_1 = \mathbf{R}_f)$ to avoid **problems with offset voltages.**

Controlled Sources

Voltage Voltage-controlled voltage source controlled Voltage Voltage-controlled current source controlled Current Current-controlled voltage source controlled Current Current-controlled current source controlled

Voltage Voltage-Controlled Voltage Source Controlled

The output voltage is the gain times the input voltage. What makes an op-amp different from other amplifiers is its impedance characteristics and gain calculations that depend solely on external resistors.

Noninverting Amplifier Version

more…

Voltage Voltage-Controlled Voltage Source Controlled

The output voltage is the gain times the input voltage. What makes an op-amp different from other amplifiers is its impedance characteristics and gain calculations that depend solely on external resistors.

Voltage-Controlled Current Source

Current Current-Controlled Voltage Source Controlled

This is simply another way of applying the op-amp operation. Whether the input is a current determined by Vin/R1 or as I1:

$$
V_{out} = \frac{-R_f}{R_1} V_{in}
$$

or

$$
\mathbf{V}_{\text{out}} = -\mathbf{I}_1 \mathbf{R}_{\text{L}}
$$

Current Current-Controlled Current Source Controlled

This circuit may appear more complicated than the others but it is really the same thing.

Instrumentation Circuits

Some examples of instrumentation circuits using opamps:

- **Display driver**
- **Instrumentation amplifier**

Display Driver

Instrumentation Amplifier

For all Rs at the same value (except Rp):

$$
V_0 = \left(1 + \frac{2R}{R_P}\right)(V_1 - V_2) = k(V_1 - V_2)
$$

Active Filters

Adding capacitors to op-amp circuits provides external control of the cutoff frequencies. The op-amp active filter provides controllable cutoff frequencies and controllable gain.

- **Low-pass filter**
- **High-pass filter**
- **Bandpass filter** \bullet

Low-Pass Filter Pass Filter—First-Order

OH1 f 1 OH $=$ **The upper cutoff frequency and voltage gain are given by:**

$$
f_{OH} = \frac{1}{2\pi R_1 C_1} \qquad A_v = 1 + \frac{R_f}{R_1}
$$

Low-Pass Filter Pass Filter—Second-Order

The roll-off can be made steeper by adding more RC networks.

High-Pass Filter Pass

The cutoff frequency is determined by:

Bandpass Filter

There are two cutoff frequencies: upper and lower. They can be calculated using the same low-pass cutoff and highpass cutoff frequency formulas in the appropriate sections.

