ELECTRONIC DEVICES AND CIRCUIT THEORY

TENTH EDITION

Chapter 4 DC Biasing–BJTs

BOYLESTAD

Biasing: The DC voltages applied to a transistor in order to turn it on so that it can amplify the AC signal.

Operating Point

The DC input establishes an operating or *quiescent point* called the *Q-point*.

The Three States of Operation

- Active or Linear Region Operation Base–Emitter junction is forward biased Base–Collector junction is reverse biased
- **Cutoff Region Operation** Base–Emitter junction is reverse biased
- Saturation Region Operation Base–Emitter junction is forward biased Base–Collector junction is forward biased

DC Biasing Circuits

- Fixed-bias circuit
- Emitter-stabilized bias circuit
- Collector-emitter loop
- Voltage divider bias circuit
- DC bias with voltage feedback

Fixed Bias

The Base-Emitter Loop

$$+\mathbf{V}_{\rm CC}-\mathbf{I}_{\rm B}\mathbf{R}_{\rm B}-\mathbf{V}_{\rm BE}=\mathbf{0}$$

Solving for base current:

$$\mathbf{I}_{\mathbf{B}} = \frac{\mathbf{V}_{\mathbf{C}\mathbf{C}} - \mathbf{V}_{\mathbf{B}\mathbf{E}}}{\mathbf{R}_{\mathbf{B}}}$$

Collector-Emitter Loop

Collector current:

 $I_{C} = \beta I_{B}$

From Kirchhoff's voltage law:

 $V_{CE} = V_{CC} - I_C R_C$

Saturation

When the transistor is operating in saturation, current through the transistor is at its *maximum* possible value.

$$I_{Csat} = \frac{V_{CC}}{R_{C}}$$

 $V_{CE} \cong 0 \, V$

Load Line Analysis

The *Q*-point is the operating point:

- where the value of R_B sets the value of I_B
- that sets the values of V_{CE} and I_{C}

Circuit Values Affect the Q-Point

more ...

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky

Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.

Circuit Values Affect the Q-Point

more ...

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.

Circuit Values Affect the Q-Point

Emitter-Stabilized Bias Circuit

Adding a resistor (R_E) to the emitter circuit stabilizes the bias circuit.

Base-Emitter Loop

From Kirchhoff's voltage law:

+ $\mathbf{V}_{\mathbf{C}\mathbf{C}}$ - $\mathbf{I}_{\mathbf{E}}\mathbf{R}_{\mathbf{E}}$ - $\mathbf{V}_{\mathbf{B}\mathbf{E}}$ - $\mathbf{I}_{\mathbf{E}}\mathbf{R}_{\mathbf{E}}$ = 0

Since $I_E = (\beta + 1)I_B$:

 $\mathbf{V}_{\mathbf{C}\mathbf{C}} - \mathbf{I}_{\mathbf{B}}\mathbf{R}_{\mathbf{B}} - (\beta + 1)\mathbf{I}_{\mathbf{B}}\mathbf{R}_{\mathbf{E}} = \mathbf{0}$

Solving for I_B:

$$\mathbf{I}_{\mathbf{B}} = \frac{\mathbf{V}_{\mathbf{C}\mathbf{C}} - \mathbf{V}_{\mathbf{B}\mathbf{E}}}{\mathbf{R}_{\mathbf{B}} + (\beta + 1)\mathbf{R}_{\mathbf{E}}}$$

Collector-Emitter Loop

From Kirchhoff's voltage law:

 $\mathbf{I}_{\mathbf{E}}\mathbf{R}_{\mathbf{E}} + \mathbf{V}_{\mathbf{C}\mathbf{E}} + \mathbf{I}_{\mathbf{C}}\mathbf{R}_{\mathbf{C}} - \mathbf{V}_{\mathbf{C}\mathbf{C}} = \mathbf{0}$

Since $I_E \cong I_C$:

$$\mathbf{V}_{\mathbf{C}\mathbf{E}} = \mathbf{V}_{\mathbf{C}\mathbf{C}} - \mathbf{I}_{\mathbf{C}}(\mathbf{R}_{\mathbf{C}} + \mathbf{R}_{\mathbf{E}})$$

Also:

$$V_E = I_E R_E$$
$$V_C = V_{CE} + V_E = V_{CC} - I_C R_C$$
$$V_B = V_{CC} - I_R R_B = V_{BE} + V_E$$

Improved Biased Stability

Stability refers to a circuit condition in which the currents and voltages will remain fairly constant over a wide range of temperatures and transistor Beta (β) values.

Adding RE to the emitter improves the stability of a transistor.

Saturation Level

The endpoints can be determined from the load line.

 $V_{CEcutoff}: I_{Csat}:$ $V_{CE} = V_{CC} \qquad V_{CE} = 0 V$ $I_{C} = 0 mA \qquad I_{C} = \frac{V_{CC}}{R_{C} + R_{E}}$

Voltage Divider Bias

This is a very stable bias circuit.

The currents and voltages are nearly independent of any variations in β .

Approximate Analysis

Where $I_B \ll I_1$ and $I_1 \cong I_2$:

$$\mathbf{V}_{\mathbf{B}} = \frac{\mathbf{R}_2 \mathbf{V}_{\mathbf{C}\mathbf{C}}}{\mathbf{R}_1 + \mathbf{R}_2}$$

Where $\beta R_E > 10R_2$:

$$I_{E} = \frac{V_{E}}{R_{E}}$$
$$V_{E} = V_{B} - V_{BE}$$

From Kirchhoff's voltage law:

$$\mathbf{V}_{CE} = \mathbf{V}_{CC} - \mathbf{I}_{C}\mathbf{R}_{C} - \mathbf{I}_{E}\mathbf{R}_{E}$$
$$\mathbf{I}_{E} \cong \mathbf{I}_{C}$$
$$\mathbf{V}_{CE} = \mathbf{V}_{CC} - \mathbf{I}_{C}(\mathbf{R}_{C} + \mathbf{R}_{E})$$

Voltage Divider Bias Analysis

Transistor Saturation Level

$$\mathbf{I}_{\mathbf{Csat}} = \mathbf{I}_{\mathbf{Cmax}} = \frac{\mathbf{V}_{\mathbf{CC}}}{\mathbf{R}_{\mathbf{C}} + \mathbf{R}_{\mathbf{E}}}$$

Load Line Analysis

Cutoff:

Saturation:

$$V_{CE} = V_{CC}$$

$$I_{C} = 0mA$$

$$I_{C} = \frac{V_{CC}}{R_{C} + R_{E}}$$

$$V_{CE} = 0V$$

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Vaa

DC Bias with Voltage Feedback

Another way to improve the stability of a bias circuit is to add a feedback path from collector to base.

In this bias circuit the Q-point is only slightly dependent on the transistor beta, β .

Base-Emitter Loop

From Kirchhoff's voltage law:

$$\mathbf{V}_{\mathbf{C}\mathbf{C}} - \mathbf{I}_{\mathbf{C}}'\mathbf{R}_{\mathbf{C}} - \mathbf{I}_{\mathbf{B}}\mathbf{R}_{\mathbf{B}} - \mathbf{V}_{\mathbf{B}\mathbf{E}} - \mathbf{I}_{\mathbf{E}}\mathbf{R}_{\mathbf{E}} = \mathbf{0}$$

Where I_B << I_C:

$$\mathbf{I'}_{\mathbf{C}} = \mathbf{I}_{\mathbf{C}} + \mathbf{I}_{\mathbf{B}} \cong \mathbf{I}_{\mathbf{C}}$$

Knowing $I_C = \beta I_B$ and $I_E \cong I_C$, the loop equation becomes:

$$\mathbf{V}_{\mathbf{C}\mathbf{C}} - \beta \mathbf{I}_{\mathbf{B}}\mathbf{R}_{\mathbf{C}} - \mathbf{I}_{\mathbf{B}}\mathbf{R}_{\mathbf{B}} - \mathbf{V}_{\mathbf{B}\mathbf{E}} - \beta \mathbf{I}_{\mathbf{B}}\mathbf{R}_{\mathbf{E}} = \mathbf{0}$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + \beta(R_{C} + R_{E})}$$

Collector-Emitter Loop

Base-Emitter Bias Analysis

Transistor Saturation Level

$$\mathbf{I}_{\mathbf{Csat}} = \mathbf{I}_{\mathbf{Cmax}} = \frac{\mathbf{V}_{\mathbf{CC}}}{\mathbf{R}_{\mathbf{C}} + \mathbf{R}_{\mathbf{E}}}$$

Load Line Analysis

Cutoff:

Saturation:

$$\mathbf{V}_{CE} = \mathbf{V}_{CC}$$
$$\mathbf{I}_{C} = \mathbf{0} \mathbf{m} \mathbf{A}$$

$$I_{C} = \frac{V_{CC}}{R_{C} + R_{E}}$$
$$V_{CE} = 0 V$$

Transistor Switching Networks

Transistors with only the DC source applied can be used as electronic switches.

Switching Circuit Calculations

Saturation current:

$$I_{Csat} = \frac{V_{CC}}{R_C}$$

To ensure saturation:

$$I_{B} > \frac{I_{Csat}}{\beta_{dc}}$$

Emitter-collector resistance at saturation and cutoff:

$$\mathbf{R}_{\text{sat}} = \frac{\mathbf{V}_{\text{CEsat}}}{\mathbf{I}_{\text{Csat}}}$$

$$R_{cutoff} = \frac{V_{CC}}{I_{CEO}}$$

Switching Time

Transistor switching times:

- $\mathbf{t_{on}} = \mathbf{t_r} + \mathbf{t_d}$
- $\mathbf{t_{off}} = \mathbf{t_s} + \mathbf{t_f}$

Troubleshooting Hints

- Approximate voltages
 - $V_{BE} \cong .7$ V for silicon transistors

- $V_{CE} \cong 25\%$ to 75% of V_{CC}

- Test for opens and shorts with an ohmmeter.
- Test the solder joints.
- Test the transistor with a transistor tester or a curve tracer.
- Note that the load or the next stage affects the transistor operation.

PNP Transistors

The analysis for *pnp* transistor biasing circuits is the same as that for *npn* transistor circuits. The only difference is that the currents are flowing in the opposite direction.

