
ELECTRONIC DEVICES AND CIRCUIT THEORY

TENTH EDITION

Chapter 7: FET Biasing

Common FET Biasing Circuits

JFET Biasing Circuits

- Fixed Bias
- Self-Bias
- Voltage-Divider Bias

D-Type MOSFET Biasing Circuits

Self-BiasVoltage-Divider Bias

E-Type MOSFET Biasing Circuits

Feedback ConfigurationVoltage-Divider Bias

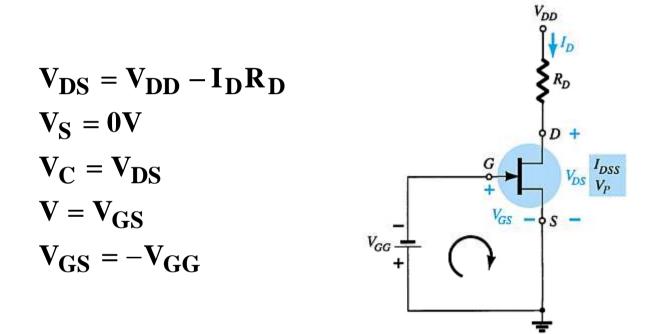
Basic Current Relationships

For all FETs:

$$I_G \cong 0A$$

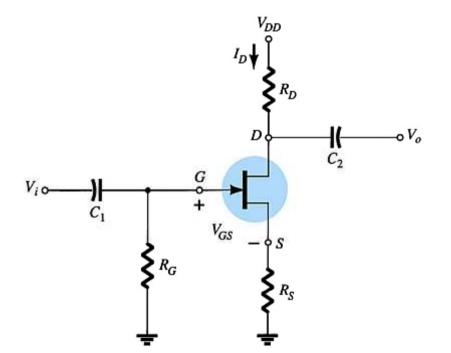
 $I_D = I_S$

For JFETS and D-Type MOSFETs:


$$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}} \right)^{2}$$

For E-Type MOSFETs:

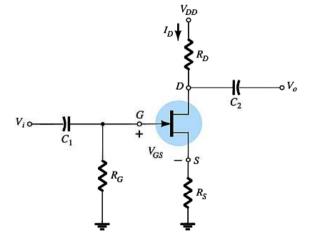
$$\mathbf{I}_{\mathbf{D}} = \mathbf{k}(\mathbf{V}_{\mathbf{GS}} - \mathbf{V}_{\mathbf{T}})^2$$


Fixed-Bias Configuration

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky

Self-Bias Configuration

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky

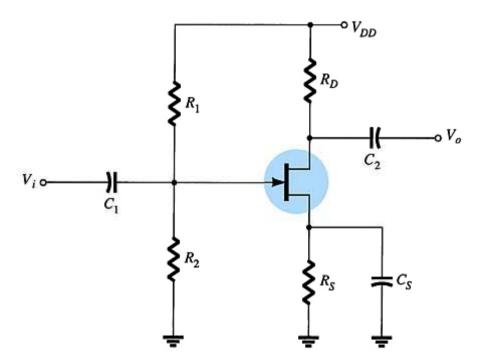

Self-Bias Calculations

For the indicated loop, $V_{GS} = -I_D R_S$ To solve this equation:

- Select an $I_D < I_{DSS}$ and use the component value of R_S to calculate V_{GS}
- Plot the point identified by I_D and V_{GS}. Draw a line from the origin of the axis to this point.
- Plot the transfer curve using I_{DSS} and $V_P (V_P = V_{GSoff}$ in specification sheets) and a few points such as $I_D = I_{DSS}/4$ and $I_D = I_{DSS}/2$ etc.

The Q-point is located where the first line intersects the transfer curve. Use the value of I_D at the Q-point (I_{DQ}) to solve for the other voltages:

$$\begin{split} \mathbf{V_{DS}} &= \mathbf{V_{DD}} - \mathbf{I_D}(\mathbf{R_S} + \mathbf{R_D}) \\ \mathbf{V_S} &= \mathbf{I_D}\mathbf{R_S} \\ \mathbf{V_D} &= \mathbf{V_{DS}} + \mathbf{V_S} = \mathbf{V_{DD}} - \mathbf{V_{RD}} \end{split}$$

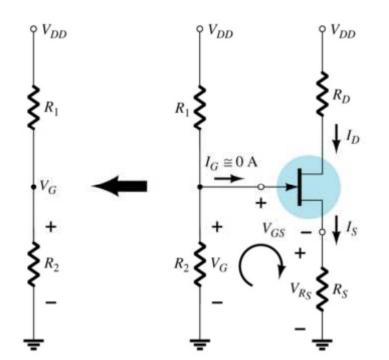


Voltage-Divider Bias

 $I_G = 0 A$

 $I_{\rm D}$ responds to changes in $V_{\rm GS}.$

Voltage-Divider Bias Calculations


V_G is equal to the voltage across divider resistor **R**₂:

$$\mathbf{V}_{\mathrm{G}} = \frac{\mathbf{R}_{2}\mathbf{V}_{\mathrm{DD}}}{\mathbf{R}_{1} + \mathbf{R}_{2}}$$

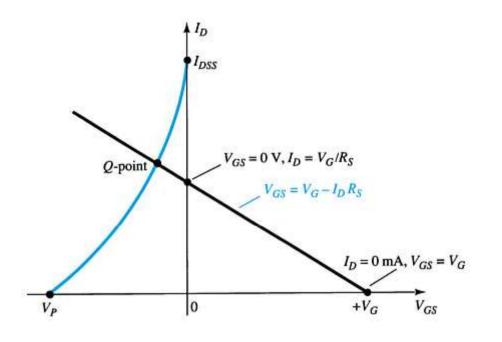
Using Kirchhoff's Law:

$$\mathbf{V}_{\mathbf{GS}} = \mathbf{V}_{\mathbf{G}} - \mathbf{I}_{\mathbf{D}}\mathbf{R}_{\mathbf{S}}$$

The Q point is established by plotting a line that intersects the transfer curve.

Voltage-Divider Q-point

Step 1


Plot the line by plotting two points: • $V_{GS} = V_G$, $I_D = 0 A$ • $V_{GS} = 0 V$, $I_D = V_G / R_S$

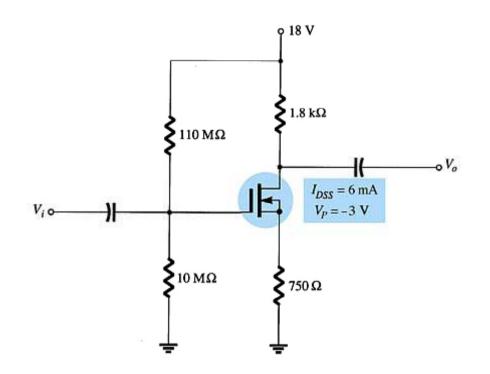
Step 2

Plot the transfer curve by plotting $I_{DSS},\,V_P$ and the calculated values of I_D

Step 3

The Q-point is located where the line intersects the transfer curve

Voltage-Divider Bias Calculations


Using the value of I_D at the Q-point, solve for the other variables in the voltage-divider bias circuit:

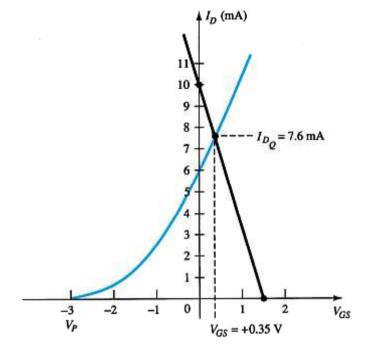
$$V_{DS} = V_{DD} - I_D (R_D + R_S)$$
$$V_D = V_{DD} - I_D R_D$$
$$V_S = I_D R_S$$
$$I_{R1} = I_{R2} = \frac{V_{DD}}{R_1 + R_2}$$

D-Type MOSFET Bias Circuits

Depletion-type MOSFET bias circuits are similar to those used to bias JFETs. The only difference is that depletion-type MOSFETs can operate with positive values of V_{GS} and with I_D values that exceed I_{DSS} .

Self-Bias

Step 1


Plot line for $V_{GS} = V_G, I_D = 0 A$ $V_D = V_G/R_S, V_{GS} = 0 V$

Step 2

Plot the transfer curve using $I_{\text{DSS}},\,V_{\text{P}}$ and calculated values of I_{D}

Step 3

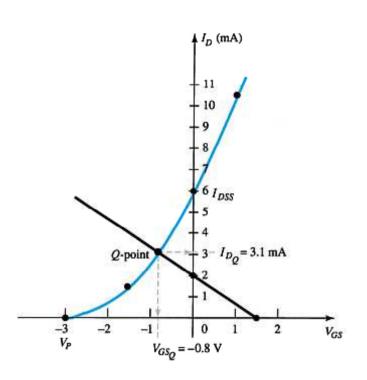
The Q-point is located where the line intersects the transfer curve. Use the I_D at the Q-point to solve for the other variables in the voltage-divider bias circuit.

These are the same steps used to analyze JFET self-bias circuits.

Voltage-Divider Bias

Step 1

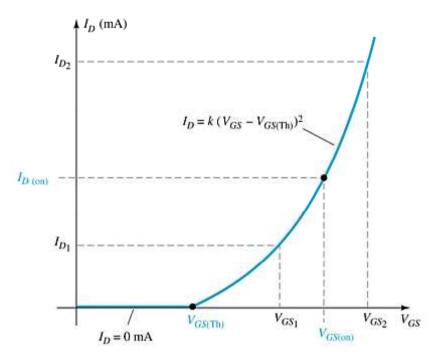
Plot the line for $V_{GS} = V_G, I_D = 0 A$ $V_D = V_G/R_S, V_{GS} = 0 V$

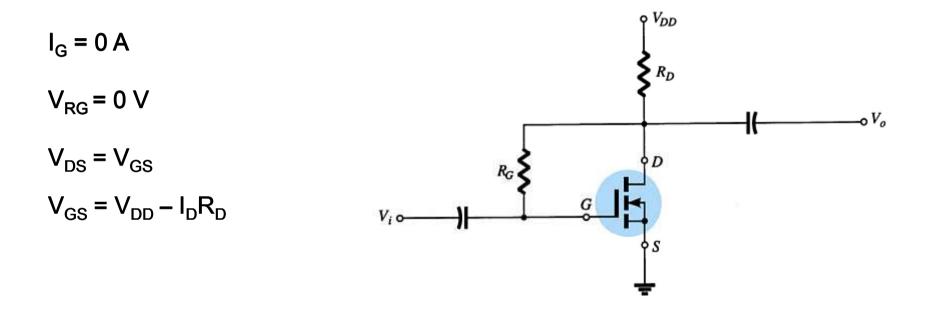

Step 2

Plot the transfer curve using I_{DSS} , V_P and calculated values of I_D .

Step 3

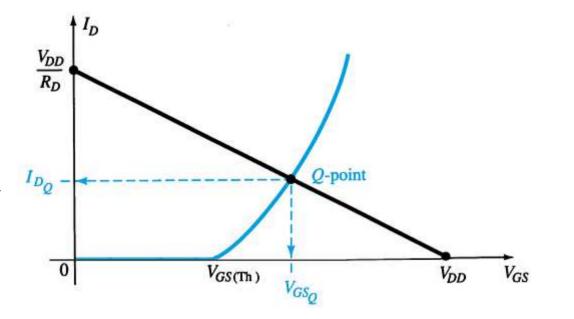
The Q-point is located where the line intersects the transfer curve is. Use the I_D at the Q-point to solve for the other variables in the voltage-divider bias circuit.


These are the same steps used to analyze JFET voltage-divider bias circuits.


E-Type MOSFET Bias Circuits

The transfer characteristic for the e-type MOSFET is very different from that of a simple JFET or the d-type MOSFET.

Feedback Bias Circuit


Feedback Bias Q-Point

Step 1 Plot the line using $\cdot V_{GS} = V_{DD}, I_D = 0 A$ $\cdot I_D = V_{DD} / R_D, V_{GS} = 0 V$

Step 2

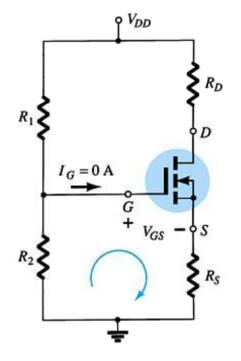
Using values from the specification sheet, plot the transfer curve with

•
$$V_{GSTh}$$
, $I_D = 0 A$
• $V_{GS(on)}$, $I_{D(on)}$

Step 3

The Q-point is located where the line and the transfer curve intersect

Step 4


Using the value of I_D at the Q-point, solve for the other variables in the bias circuit

Voltage-Divider Biasing

Plot the line and the transfer curve to find the Q-point. Use these equations:

$$V_{G} = \frac{R_{2}V_{DD}}{R_{1} + R_{2}}$$
$$V_{GS} = V_{G} - I_{D}R_{S}$$
$$V_{DS} = V_{DD} - I_{D}(R_{S} + R_{D})$$

Voltage-Divider Bias Q-Point

Step 1

Plot the line using

$$V_{GS} = V_G = (R_2 V_{DD}) / (R_1 + R_2), I_D = 0 A$$

 $V_D = V_G / R_S, V_{GS} = 0 V$

Step 2

Using values from the specification sheet, plot the transfer curve with

• V_{GSTh} , $I_D = 0 A$ • $V_{GS(on)}$, $I_{D(on)}$

Step 3

The point where the line and the transfer curve intersect is the Q-point.

Step 4

Using the value of I_D at the Q-point, solve for the other circuit values.

For *p*-channel FETs the same calculations and graphs are used, except that the voltage polarities and current directions are reversed.

The graphs are mirror images of the *n*-channel graphs.

Applications

Voltage-controlled resistor JFET voltmeter Timer network Fiber optic circuitry MOSFET relay driver

