ELECTRONIC DEVICES AND CIRCUIT THEORY

TENTH EDITION

Chapter 8: FET Amplifiers

BOYLESTAD

Introduction

FETs provide:

- Excellent voltage gain
- High input impedance
- Low-power consumption
- Good frequency range

FET Small-Signal Model

Transconductance

The relationship of a change in I_D to the corresponding change in V_{GS} is called transconductance

Transconductance is denoted g_m **and given by:**

$$\mathbf{g}_{\mathbf{m}} = \frac{\Delta \mathbf{I}_{\mathbf{D}}}{\Delta \mathbf{V}_{\mathbf{GS}}}$$

Graphical Determination of g_m

Mathematical Definitions of g_m

$$g_{m} = \frac{\Delta I_{D}}{\Delta V_{GS}}$$

$$g_{m} = \frac{2I_{DSS}}{|V_{P}|} \left[1 - \frac{V_{GS}}{V_{P}} \right]$$
Where $V_{GS} = 0V$ $g_{m0} = \frac{2I_{DSS}}{|V_{P}|}$

$$g_{m} = g_{m0} \left[1 - \frac{V_{GS}}{V_{P}} \right]$$
Where $1 - \frac{V_{GS}}{V_{P}} = \sqrt{\frac{I_{D}}{I_{DSS}}}$

$$g_{m} = g_{m0} \left(1 - \frac{V_{GS}}{V_{P}} \right) = g_{m0} \sqrt{\frac{I_{D}}{I_{DSS}}}$$

FET Impedance

Input impedance:

$$Z_i = \infty \Omega$$

Output Impedance:

$$\mathbf{Z}_{\mathbf{o}} = \mathbf{r}_{\mathbf{d}} = \frac{1}{\mathbf{y}_{\mathbf{os}}}$$

where:

$$\mathbf{r}_{\mathbf{d}} = \frac{\Delta \mathbf{V}_{\mathbf{DS}}}{\Delta \mathbf{I}_{\mathbf{D}}} \Big| \mathbf{V}_{\mathbf{GS}} = \text{constant}$$

y_{os}= admittance parameter listed on FET specification sheets.

FET AC Equivalent Circuit

Common-Source (CS) Fixed-Bias Circuit

The input is on the gate and the output is on the drain

There is a 180° phase shift between input and output

Input impedance:

 $Z_i = R_G$

Output impedance:

$$\begin{aligned} \mathbf{Z}_{o} &= \mathbf{R}_{D} \mid \mid \mathbf{r}_{d} \\ \mathbf{Z}_{o} &\cong \mathbf{R}_{D} \end{vmatrix} _{\mathbf{r}_{d} \geq 10\mathbf{R}_{D}} \end{aligned}$$

$$\mathbf{A}_{\mathbf{V}} = \frac{\mathbf{V}_{\mathbf{0}}}{\mathbf{V}_{\mathbf{i}}} = -\mathbf{g}_{\mathbf{m}}(\mathbf{r}_{\mathbf{d}} \parallel \mathbf{R}_{\mathbf{D}})$$
$$\mathbf{A}_{\mathbf{V}} = \frac{\mathbf{V}_{\mathbf{0}}}{\mathbf{V}_{\mathbf{i}}} = -\mathbf{g}_{\mathbf{m}}\mathbf{R}_{\mathbf{D}} \Big|_{\mathbf{r}_{\mathbf{d}} \ge 10\mathbf{R}_{\mathbf{D}}}$$

Common-Source (CS) Self-Bias Circuit

This is a common-source amplifier configuration, so the input is on the gate and the output is on the drain

There is a 180° phase shift between input and output

Input impedance:

 $Z_i = R_G$

Output impedance:

$$\begin{aligned} \mathbf{Z}_{\mathbf{0}} &= \mathbf{r}_{\mathbf{d}} \parallel \mathbf{R}_{\mathbf{D}} \\ \mathbf{Z}_{\mathbf{0}} &\cong \mathbf{R}_{\mathbf{D}} \\ \mathbf{r}_{\mathbf{d}} \geq 10\mathbf{R}_{\mathbf{D}} \end{aligned}$$

$$\mathbf{A}_{\mathbf{v}} = -\mathbf{g}_{\mathbf{m}}(\mathbf{r}_{\mathbf{d}} \parallel \mathbf{R}_{\mathbf{D}})$$
$$\mathbf{A}_{\mathbf{v}} = -\mathbf{g}_{\mathbf{m}}\mathbf{R}_{\mathbf{D}} \Big|_{\mathbf{r}_{\mathbf{d}} \ge 10\mathbf{R}_{\mathbf{D}}}$$

Common-Source (CS) Self-Bias Circuit

$$A_{v} = \frac{V_{o}}{V_{i}} = -\frac{g_{m}R_{D}}{1 + g_{m}R_{S} + \frac{R_{D} + R_{S}}{r_{d}}}$$
$$A_{v} = \frac{V_{o}}{V_{i}} = -\frac{g_{m}R_{D}}{1 + g_{m}R_{S}} |r_{d} \ge 10(R_{D} + R_{S})|$$

Common-Source (CS) Voltage-Divider Bias

This is a common-source amplifier configuration, so the input is on the gate and the output is on the drain.

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky

Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.

Impedances

Input impedance:

 $\mathbf{Z}_i = \mathbf{R}_1 \parallel \mathbf{R}_2$

Output impedance:

$$\begin{aligned} \mathbf{Z}_{o} &= \mathbf{r}_{d} \parallel \mathbf{R}_{D} \\ \mathbf{Z}_{o} &\cong \mathbf{R}_{D} \\ \mathbf{r}_{d} \geq 10 \mathbf{R}_{D} \end{aligned}$$

$$\mathbf{A}_{\mathbf{v}} = -\mathbf{g}_{\mathbf{m}}(\mathbf{r}_{\mathbf{d}} \parallel \mathbf{R}_{\mathbf{D}})$$
$$\mathbf{A}_{\mathbf{v}} = -\mathbf{g}_{\mathbf{m}}\mathbf{R}_{\mathbf{D}} \Big|_{\mathbf{r}_{\mathbf{d}} \ge 10\mathbf{R}_{\mathbf{D}}}$$

Source Follower (Common-Drain) Circuit

In a common-drain amplifier configuration, the input is on the gate, but the output is from the source.

There is no phase shift between input and output.

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.

Impedances

Input impedance:

$$Z_i = R_G$$

Output impedance:

$$Z_{o} = r_{d} \parallel R_{S} \parallel \frac{1}{g_{m}}$$
$$Z_{o} \cong R_{S} \parallel \frac{1}{g_{m}} \mid r_{d} \ge 10R_{S}$$

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{g_{m}(r_{d} \parallel R_{S})}{1 + g_{m}(r_{d} \parallel R_{S})}$$
$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{g_{m}R_{S}}{1 + g_{m}R_{S}} |_{r_{d}} \ge 10$$

Common-Gate (CG) Circuit

The input is on the source and the output is on the drain.

There is no phase shift between input and output.

+G

Input impedance:

$$Z_{i} = R_{S} \parallel \left[\frac{r_{d} + R_{D}}{1 + g_{m} r_{d}} \right]$$
$$Z_{i} \cong R_{S} \parallel \frac{1}{g_{m}} |_{r_{d} \ge 10R_{D}}$$

Output impedance:

$$\mathbf{Z}_{\mathbf{o}} = \mathbf{R}_{\mathbf{D}} || \mathbf{r}_{\mathbf{d}}$$
$$\mathbf{Z}_{\mathbf{o}} \cong \mathbf{R}_{\mathbf{D}} |_{\mathbf{r}_{\mathbf{d}} \ge 10}$$

Voltage gain:

$$\mathbf{A}_{v} = \frac{\mathbf{V}_{o}}{\mathbf{V}_{i}} = \frac{\left[\mathbf{g}_{m} \mathbf{R}_{D} + \frac{\mathbf{R}_{D}}{\mathbf{r}_{d}} \right]}{\left[1 + \frac{\mathbf{R}_{D}}{\mathbf{r}_{d}} \right]} \quad \mathbf{A}_{v} = \mathbf{g}_{m} \mathbf{R}_{D} \Big|_{\mathbf{r}_{d} \ge 10 \mathbf{R}_{D}}$$

D-Type MOSFET AC Equivalent

E-Type MOSFET AC Equivalent

Common-Source Drain-Feedback

Input impedance:

$$Z_{i} = \frac{R_{F} + r_{d} \parallel R_{D}}{1 + g_{m}(r_{d} \parallel R_{D})}$$
$$Z_{i} \cong \frac{R_{F}}{1 + g_{m}R_{D}} \mid R_{F} \gg r_{d} \parallel R_{D}, r_{d} \ge 10R_{D}$$

Output impedance:

$$Z_{0} = R_{F} || r_{d} || R_{D}$$
$$Z_{0} \cong R_{D} \Big|_{R_{F} \gg r_{d} || R_{D}, r_{d} \ge 10R_{D}}$$

$$\mathbf{A}_{\mathbf{v}} = -\mathbf{g}_{\mathbf{m}}(\mathbf{R}_{\mathbf{F}} \| \mathbf{r}_{\mathbf{d}} \| \mathbf{R}_{\mathbf{D}})$$
$$\mathbf{A}_{\mathbf{v}} \cong -\mathbf{g}_{\mathbf{m}}\mathbf{R}_{\mathbf{D}} |_{\mathbf{R}_{\mathbf{F}} >> \mathbf{r}_{\mathbf{d}} \| \mathbf{R}_{\mathbf{D}}, \mathbf{r}_{\mathbf{d}} \ge 10\mathbf{R}_{\mathbf{D}}}$$

Common-Source Voltage-Divider Bias

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.

Input impedance:

 $\mathbf{Z}_i {=} \mathbf{R}_1 {\parallel} \mathbf{R}_2$

Output impedance:

$$\begin{aligned} \mathbf{Z}_{\mathbf{o}} &= \mathbf{r}_{\mathbf{d}} \parallel \mathbf{R}_{\mathbf{D}} \\ \mathbf{Z}_{\mathbf{o}} &\cong \mathbf{R}_{\mathbf{D}} \Big|_{\mathbf{r}_{\mathbf{d}} \ge 10} \end{aligned}$$

Voltage gain:

 $\mathbf{A}_{\mathbf{v}} = -\mathbf{g}_{\mathbf{m}}(\mathbf{r}_{\mathbf{d}} \parallel \mathbf{R}_{\mathbf{D}})$ $\mathbf{A}_{\mathbf{v}} \cong -\mathbf{g}_{\mathbf{m}}\mathbf{R}_{\mathbf{D}}\Big|_{\mathbf{r}_{\mathbf{d}} \ge 10\mathbf{R}_{\mathbf{D}}}$

Summary Table

more...

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.

Summary Table

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky

Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.

Troubleshooting

Check the DC bias voltages:

If not correct check power supply, resistors, FET. Also check to ensure that the coupling capacitor between amplifier stages is OK.

Check the AC voltages:

If not correct check FET, capacitors and the loading effect of the next stage

Practical Applications

Three-Channel Audio Mixer Silent Switching Phase Shift Networks Motion Detection System

