ElectroMagnetic Compatibility

• The ability of an equipment or system to function satisfactorily in its environment without introducing intolerable electromagnetic interference to anything in that environment.

$$EMC = EME + EMI$$

EME=Electromagnetic Emission (Interference) EMI=Electromagnetic Immunity (Susceptibility)

EMC...A complicated and difficult subject!!!!?

- Talks in Order of Magnitudes
- Frequency from DC to daylights
- magnitude μA kA; μV MV
- works on dB for order of magnitude, and log scale in frequency
- Different types of EMC requirements, methods, measurements
- Many different standards

Sources of Emission / Noise

Natural / man-made / intended emission!

Coupling

Effects of EME/ EM interference

Equipment to equipment

- Loss of data in digital systems or in transmission of data
- Interference to TV and radio reception
- Malfunction of medical electronic equipment
- Malfunction of automotive microprocessor control systems (braking) and navigation equipment
- Malfunction of critical process-control functions (e.g. oil, chemical, airports railways)
-

Equipment to Human (Human Safety)

- IEEE C95.1 Standard For Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3KHz to 300GHz
- ICNIRP Guidelines limiting exposure to time-varying Electric, Magnetic, and Electromagnetic fields (Up to 300 GHz).

EME and **EMI** Testsc

RE, CE, RI, CI, ESD, Fast transient and Burst, Surge, H- field, Voltage dip......

Different characteristics of emissions

Radiated Emission-

- Far field radiation
- near field radiation
 - E field source
 - H field source

Conducted Emission

Different paths

....dc port, power port, communication port

Electromagnetic Coupling

RE, CE, RI, CI

RE, CE, RI, CI, ESD, Fast transient and Burst, Surge, H- field, Voltage dip.

RE, CE, RI, CI

- EMC tests emulate general emissions in environment.
- Conducted, 9kHz ~230MHz
- Radiated, 30 MHz ~1 GHz
- Limits: e.g. RE in terms of V/m, generally expressed as dBμV/m, taken as far field radiation, in E field values.

Table 5 – Limits for radiated disturbance of class A ITE at a measuring distance of 10 m

Frequency range MHz	Quasi-peak limits dB(μV/m)
30 to 230	40
230 to 1 000	47

NOTE 1 The lower limit shall apply at the transition frequency.

NOTE 2 Additional provisions may be required for cases where interference occurs.

RE : 40 $dB\mu V/m \sim o.oiV/m$

the mains ports

Frequency range MHz	Limits dB(μV)		
	Quasi-peak	Average	
0,15 to 0,50	66 to 56	56 to 46	
0,50 to 5	56	46	
5 to 30	60	50	

NOTE 1 The lower limit shall apply at the transition frequencies.

NOTE 2 The limit decreases linearly with the logarithm of the frequency in the range 0,15 MHz to 0,50 MHz.

 $CE : 60 dB\mu V/m \sim 0.001 V/m$

Examples of some limits in Radiated Emission

...from CISPR22

EMC- A reasonable good margin between RE and RI, for general consideration!!

22222	Radio-frequency	80 to 1 000	MHz	IEC 61000-4-3 c
15.555	electromagnetic field. Amplitude modulated	3	V/m	
55555		80	% AM (1 kHz)	

RI requirement3V/m

RE: $40 \text{ dB}\mu\text{V/m} \sim 0.01\text{V/m}$

Radio-frequency common mode	0,15 to 80	MHz	IEC 61000-4-6
	3	V	
	80	% AM (1 kHz)	
		mode 3	mode V

CI requirement3V

 $CE : 60 \text{ dB}\mu\text{V/m} \sim 0.001\text{V/m}$

Examples of some limits in Radiated Immunity

from IEC 61000-6-1 for RCLI

ELECTROSTATIC DISCHARGE (ESD)

A transfer of electric charge between bodies of different electrostatic potential in proximity or through direct contact.

Effect:

Cause damage to electronic equipment.

ELECTROSTATIC DISCHARGE (ESD)

Hard failures (irreversibly)

- Junction burnout
- IC metal burnout
- •Dielectric breakdown

Soft failures (mainly digital circuits)

Transient interference (eg. Radio)

Logic errors, System resets, Lost data, Lost program flow

HUMAN BODY MODEL

C = 50 to 250 pF

 $R = 500\Omega$ to $10k\Omega$

 $|V_C| = 0$ to 30kV (above 30V will have corona effect)

L = 50 - 200 nH

First order model, TRIBOELECTRIC EFFECT

EN 61000-4-2 Testing and measurement techniques – Electrostatic discharge immunity test

DISCHARGE INTO AN IDEAL GROUND

$$I_{pk} = \frac{15kV}{500\Omega} = 30A$$

