Aim: To perform the identification test for ferrous sulphate

Requirements:

Chemicals & Reagents: Ferrous sulphate crystals, dilute H₂SO₄, phenanthroline, ceric ammonium sulphate, potassiun ferricyanide, dilute HCl, potassiun ferrocyanide, barium chloride, lead acetate, ammonium acetate, dilute NaOH, iodine solution, strontium chloride.

Glassware: Test tube, beaker, funnel watch glass, spatula

Chemical Formula: FeSO₄.7H₂O

Theory: Ferrous sulfate occurs as a crystalline bluish green powder. It has a tendency to rapidly oxidize on exposure to moist air. It is odorless and is characterized through its metallic taste (styptic) taste. It is soluble in water but insoluble in alcohol.

Use: It is used as an important hematinic agent in various iron formulations for treatment of The identification reactions for ferrous sulphate are summarized as below:

Sr. No	Test	Observation	Inference
1.	To a small quantity of salt, add dilute H ₂ SO ₄ and phenanthroline	Red colouration	Fe ⁺² may be present
2.	Add ceric ammonium sulphate	Red colour discharged	Fe ⁺² is confirmed
3.	Take salt and add potassiun ferricyanide	Blue precipitates observed	Fe ⁺² is confirmed
4.	Add dilute HCl	Precipitates are insolube	Fe ⁺² ion confirmed
5.	Take salt and add potassiun ferrocyanide and add dilute HCl	White precipitates are formed and rapidly becomes blue	Fe ⁺² may be present
6.	Add dilute HCl	The precipitates are insoluble	Fe ⁺² is confirmed

A) Identification test for Fe^{+2}

Result: The given sample contains Fe^{+2} cations.

B) Identification t	test for SO ₄ ²⁻
-----------------------------	--

Sr. No	Test	Observation	Inference
1.	To a small quantity of salt, add water with dilute HCl and BaCl ₂	White precipitate	SO ₄ ²⁻ may be present
2.	Take salt and add lead acetate	White precipitate	SO ₄ ²⁻ may be present
3.	Add CH ₃ COONH ₄ with NaOH	Precipitate dissolve	SO ₄ ²⁻ ion confirmed
4.	Take salt and add iodine solution	Suspension of yellow colour is obtained	SO ₄ ²⁻ may be present
5.	To the above suspension, add SnCl ₂ and boil the mixture	No colour precipitate obtained	SO ₄ ²⁻ ion confirmed

Result: The given sample contains SO_4^{2-} anions.