INTRAVENOUS ADMIXTURE SYSTEM

Mohamed Saber Ibrahim

Clinical pharmacy department – SOH- Luxor Msc Clinical Pharmacy – Ainshams University, CSSBB - ASQ USA

- Hospital pharmacist have been involved with the preparation of parenteral dosage forms for several decades
- Was only compounding sterile intravenous, intrathecal, ophthalmic, and irrigating solutions that were not available commercially

- The first needle was made from a quill attached to an animal bladder
- Lack of aseptic techniques and sterile, pure drugs caused failure in parenteral therapy until 19th century

- Through effort of Pasteur and others (Lister, Koch, Jenner, Hunter and Seibert) aseptic technique, bacteriologic filtration methods, and pyrogen free diluents were developed
- Gained recognition by the national formulary and U.S. pharmacopeia (USP)

 40% of hospital inpatients receive IV preparations (and it is continue raising!)

 replacing fluids and electrolytes, provide nutrition and administer medication

- Parenteral comes from a geek words "para" and "enteron" =outside the intestine
- Injection medication into veins and through subcutaneous tissue

Basic Intravenous Therapy

- Intravenous (IV) route of administrations is the most common route that parenteral dose are administered today.

- Other parenteral dosage forms are:

- 1. intramuscular (IM)
- 2. subcutaneous (SubQ)
- 3. intradermal (ID)
- 4. epidural

- IV fluid is in a large-volume parenteral (LVP), usually more than 100 mL

Risks of Intravenous Therapy

- Infection results if a product contaminated with bacteria is infused into a patient.
- Air embolus incidence is low, because many solutions are administered using infusion pumps equipped with an alarm that sound when air is in the IV line. These are called **air-in-line alarms**.
 - in adults it takes 150 or 200 mL of air (much less in infants or pediatric patient) given quickly to result in harm.

Risks continued...

- Allergic reaction when a patient has an allergic reaction to a substance given parenterally the reaction is usually more severe than if the same substance was given by another route (e.g. mouth, topically, or rectally)
 - one reason for this is that substances given parenterally cannot be retrieved like substances given by other routes.
- Incompatibilities if an incompatibility exists, the drug might precipitate, be inactivated, or adhere to the container. Incompatible solutions should not be administered to patients.

Risks continued...

- Extravasation occurs when the catheter punctures and exits the vein under the skin, causing drugs to infuse or infiltrate into the tissue.
- Particulate matter refers to particles present in parenteral products. When injected into the bloodstream can cause adverse effects to the patient. Examples:
 - microscopic glass fragments
 - hair
 - lint or cotton fibers
 - undissolved drug particles
 - fragments of rubber stoppers

Risks continued...

- Pyrogens the by-products or remnants of bacteria, can cause reactions (e.g. fever and chills) if injected in large enough amounts.
- Phlebitis Irritation of the vein. Caused by:
 - the drug being administered (due to it chemical properties or its concentration)
 - the location of the IV site
 - a fast rate of administration
 - the presence of particulate matter

- the patient usually feels pain or discomfort along the path of the vein (often severe) and red streaking may also occur

- In 2012 WHO published: nosocomial infection rate of 15 % for developing countries (based on rates in South Africa) e' a 5 % mortality rate.
- Ineffective IC & inappropriate use of antimicrobial agents in health care facilities has resulted in the emergence of MDR bacteria.

Root causes of nosocomial infections and MDR problems in hospitals include the following—

- Lack of an IC infrastructure and poor IC practices & basic training (procedures)
- Inadequate facilities and techniques for hand hygiene

- Lack of isolation precautions and procedures. Large medical and surgical wards
- Use of advanced, complex treatments without adequate supporting training and infrastructure,
- Inadequate sterilization, disinfection, and hospital cleaning procedures

- One of the most important recommendations of WHO IC guidelines:
- Careful Use of Intravascular Catheters, Intravenous Fluids, and Medications:
- Medication admixtures to IV solutions should be prepared centrally by qualified pharmacy personnel. If this is not possible,
- specific policies and procedures should prepared for nurses who should be certified competent before they are allowed to prepare admixtures.
- Use all lipid and parenteral nutrition solutions promptly.

- Admixture system" refers to sterile IV solutions that are prepared by using one or more medications or electrolytes and will be administered via the parenteral route
- Admixture also could be irrigation, ophthalmic, and intrathecal solutions

the responsibility of the pharmacy are: Contamination

 The pharmacy must maintain a clean area out of the direct flow of traffic with a vertical or horizontal laminar air flow hood to prepare IV admixtures

the responsibility of the pharmacy are: Compatibility

 A pharmacist education should prepare him/her to deal with problems of physical, chemical, and therapeutic incompatibilities and to design suitable alternatives when these problem arise

the responsibility of the pharmacy are: Stability

- Drug stability information must be readily accessible to the pharmacist in order to determine optimum conditions for drug storage prior and after preparation
- The stability of a drug at ideal storage conditions will help to establish a reasonable expiration date for the product
- Product sterility, overall integrity also inspected

the responsibility of the pharmacy are: Cost

- Preparation in the pharmacy is more economically than individual nurses on a patient unit
- The overall cost of drug, diluents procurement, storage, preparation time, and waste is less in pharmacy based admixture program
- Nurse based program needs coordination of efforts to obtain drugs from the pharmacy as well as diluents solutions from central supply

the responsibility of the pharmacy are: Cost (cont')

- In pharmacy frequently administered medications can be obtained in bulk containers which decreases drug procurement cost, and can be prepared in batches, which decreases both labor and waste
- Nursing time associated with administration to patients is minimized
- The amount of unused and wasted parenteral is likely to decrease when a pharmacy IV admixture program is used

the responsibility of the pharmacy are: Errors

- Reduced in a pharmacy based admixture program
- It has been less likely for the pharmacist than the other health professionals to make errors in pharmaceutical calculation
- Standardized dosing charts, showing pre-calculated drug doses and dilutions, contained in admixture area can also reduced the potential of error

the responsibility of the pharmacy are: Process

- First pharmacist will determine dosage, diluents, volume of diluent, and rate of administration are correct
- Next the label will be checked against the original order
- The final solution with additives will then be checked against the label to ensure that the proper dose has been prepared
 - "Read the label three times"

Components of an IV program

- Preparation area
- Policies and procedures
- Personnel

- Storage space
- Admixture systems

Components of an IV program Preparation area

- Ideally in separate room in the pharmacy "clean room"
- Size vary

EXAMPLE OF CLEAN ROOM FLOOR PLAN SUITABLE FOR HIGH-RISK LEVEL CSPs AND HAZARDOUS DRUGS

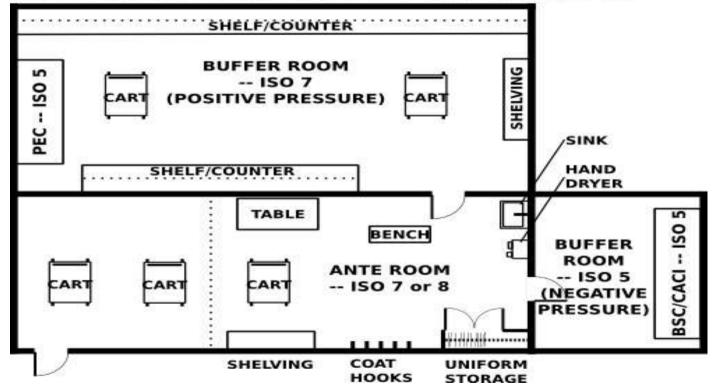


Table 19-1. Preparation area*

- Tiled, washable floor covered with a coat of vinyl or epoxy sealant to provide a continuous surface
- Hand-washing facilities
- Laminar air-flow hoods: horizontal and/or vertical air-flow
- Refrigerator

- Preparation equipment: needles, syringes, alcohol prep pads, gloves,
 - masks, gowns, receptacles for disposables, small-volume parenterals, diluents, and solutions
- Good lighting
- Adequate counter space
- Restricted area or minimized traffic flow
- Prohibition of smoking, beverages, food, and unauthorized personnel

"Some references recommend that only sterile equipment be kept in the preparation area.

■ USP 800 for clean room area

Components of an IV program Polices and procedures

- Guidelines for preparing parenteral products should be outlines in the pharmacy's policy and procedure manual
- Detailed information regarding preparation, labeling, storage and expiration dating of parenteral products should be readily available in the pharmacy
- These policy help to provide quality control for the parenteral products

Components of an IV program Polices and procedures

Stability

Rigorous stability testing by the

- pharmaceutical manufacturer
- Independent investigators
- Put in your mind that stability is affected by place, environmental condition, diluent used to administer the product, other drugs that may be mixed with
- Stability and sterility! Gives the expiration date

Components of an IV program Polices and procedures

incompatibility

Physical: visible change e.g. precipitation

- Chemical: may or not visible change, deterioration or inactivation of an active ingredient
- Therapeutic: drug-drug or drug-disease interaction that lead to potentiating of drug effect, drug toxicity, deterioration

Components of an IV program Polices and procedures

• Aseptic Technique

Method of handling sterile products, a sterile parenteral dosage form is free from living microorganisms, particulate matter, and pyrogens

It refers to the ability of personnel who prepare these IV solutions to handle these products in the clean environment of a laminar or vertical air flow hood without introducing viable microorganisms into the product

Components of an IV program

Sterile compounding area

- Sterile parenteral solutions must be free of living microorganisms and relatively free of particles and pyrogens.
- A sterile compounding area should be cleaned daily and segregated from normal pharmacy operations, patient specimens, nonessential equipment, and other materials that produce particles. Examples:
 - traffic flow should be minimized.
 - floors should be disinfected periodically.
 - trash should be removed frequently and regularly.

Components of an IV program Polices and procedures

 Labeling and check systems
Reviewed against the patient's current medication profile

Intravenous Admixture System Labeling & checking system

Properly label the IV with the following information:

- Patient name, ID number and room number (if inpatient)
- Bottle or bag sequence number, when appropriate
- Name and amount of drugs(s) added
- Name and volume of admixture solution-Auxiliary labeling
- Approximate final total volume of the admixture.
- Prescribed flow rate (in mLs per hour)
- Date and time of scheduled administration
- Date and time of preparation
- Expiration date

- Initials of person who prepared and person who checked the IV admixture
- Auxiliary labeling supplemental instructions and precautions

Components of an IV program Polices and procedures

- Quality assurance and control
- A system of checks and balances, aseptic environments, and the pharmacist's access to booth the patient\s medication profile and the final product provide more stringent quality control over parenteral therapy
- Routine inspection of all laminar air flow hoods must be performed, routine hood maintaince

Components of an IV program

Polices and procedures

Quality assurance and control (cont')

A typical IV order for a patient would entail the following activities

- 1. A pharmacy copy of the physician's original order is prepared, containing the patient's name, room number, IV fluids, additive(s), and flow rate.
- 2. The Rx order is entered into the patient's profile by a pharmacist who checks for drug interactions, proper dose, compatibilities, duplication of medication, allergies, length of therapy and other patient therapies
- 3. A label is prepared and checked against the original order
- 4. The parenteral product is prepared by the pharmacist or by an experienced technician

Components of an IV program

Polices and procedures

Quality assurance and control (cont')

A typical IV order for a patient would entail the following activities

- 5. The prepared product is then checked against the label and original order by a pharmacist. Dosage, ingredients, auxiliary labels, compatibility, route, rate, absence of particulate mater, discoloration, and container integrity are verified.
- 6. Upon delivery of the IV product to the patient unit, the solution is once again checked by the person who will be administering the drug
- 7. Whenever possible, IV admixture should be refrigerated until shortly prior use

Components of an IV program Polices and procedures

Auxiliary label

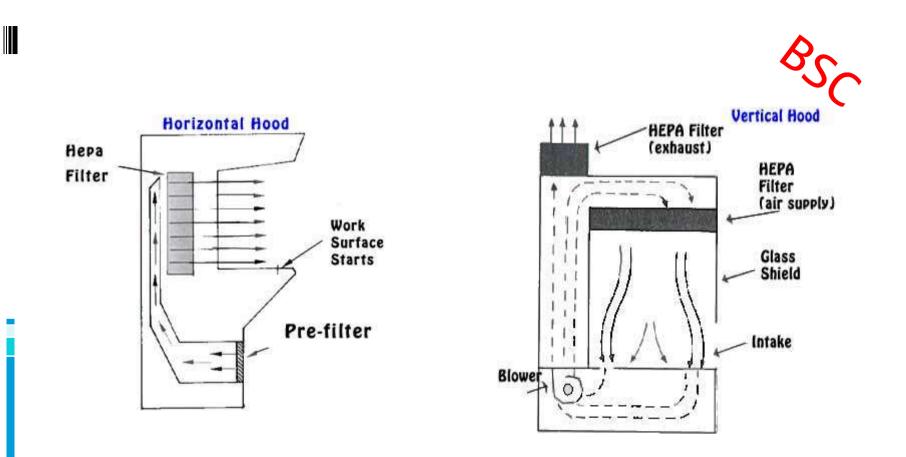
There need arise after a potential medication error occurs on the patient-care

Table 19-4. Auxiliary labels*

Note dosage strength —	to be placed on concentrated solutions which are double or triple the strengths that are normally used (these types of solutions may be used on patients who are fluid restricted).		
Must activate before use	to be placed on unactivated ADD-Vantage [®] solutions		
Protect from light			
Do not refrigerate - Do not a	llow to freeze		
Caution: Chemotherapeutic a	gent — Dispose of property		
Caution: Vesicant/Tissue irrit	ant		
For epidural use only			

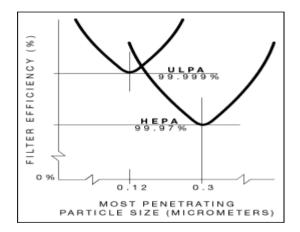
*Some of the labels listed above must be specially ordered.

Components of an IV program equipments


- Laminar air flow hoods
- Refrigerator
- references

Components of an IV program equipments

- Laminar air flow hoods
 - False sense of security


- It uses high efficiency particulate air (HEPA) filtration could be horizontal or vertical
- Hoods do not sterilize an environment but maintain it clean
- Should be inspected every 6 months

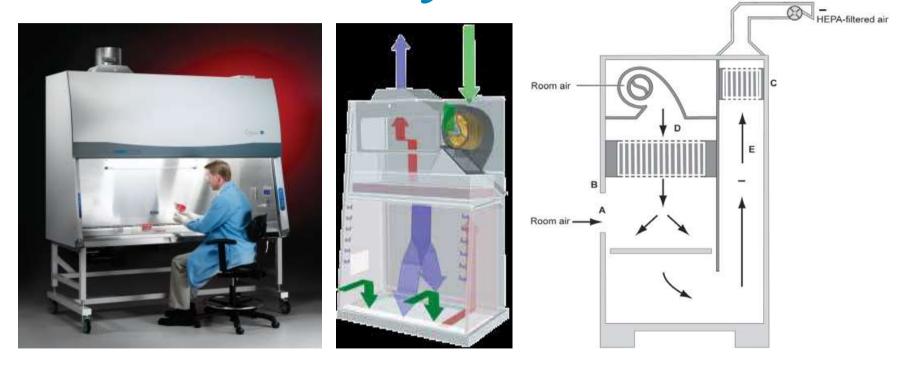
HEPA vs ULPA

HEPA: High Efficiency Particulate Air, it's efficacy is 99.99% at 0.3microns

ULPA: Ultra Low Penetration Air, it's efficacy is 99.999% at between 0.1 to 0.2microns.

Types of BSC:

Class	Min Inflow Velocity (fpm)	Recirc. Air	Exhaust Air	Exhaust Alternatives	Biosafety Level
I	75	0%	100%	Inside room / Hard Duct	1,2,3
II Aı	75	70%	30%	Inside room / Thimble Duct	1,2,3
II A2	100	70%	30%	Inside room / Thimble Duct	1,2,3
II B1	100	30%	70%	Hard duct only	1,2,3
II B2	100	0%	100%	Hard duct only	1,2,3
III	Closed P>0.5"WG	0%	100%	Inside room / Hard Duct	1,2,3,4

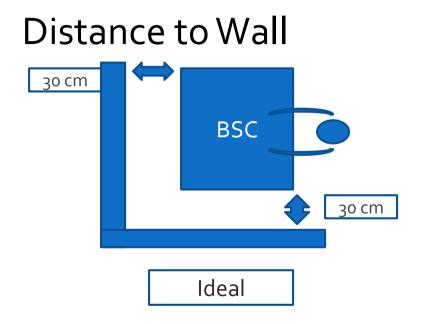

Bio Safety Level (BSL)

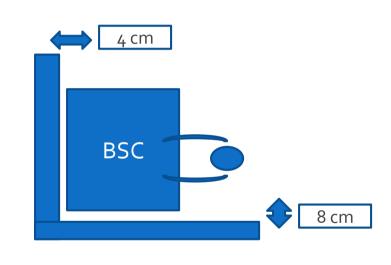
Level	Lethality	Cure	Example
1	Safe	Yes	B.Subtilis
2	Some	Some	HIV
3	Serious	Some	M. Tuberculosis
4	Extreme	Non	Numerous virus that cause hemorrhagic Disease e.g.Ebola

Biological Safety Cabinet Selection:

BSC Selection	Type of protection
Class I, Class II, Class III	Personnel Protection, microorganisms in Risk Groups 1-3
Class III	Personnel Protection, microorganisms in Risk Groups 4, glove box laboratory
Class I, Class II	Personnel Protection, microorganisms in Risk Groups 4, suit laboratory
Class II, Class III	Product Protection
Class II Type B1, Class II Type A2 vented to outside	Volatile radionuclide / chemical protection, re-circulated back to work zone
Clars I, Class II Type B2, ClassIII vented to outside	Volatile radionuctide / chemical protection, no re-circulation back to work zone

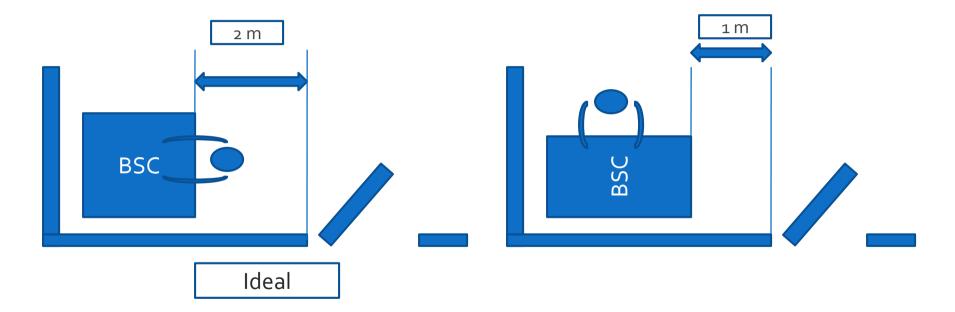
Class II B2 BSC Airflow

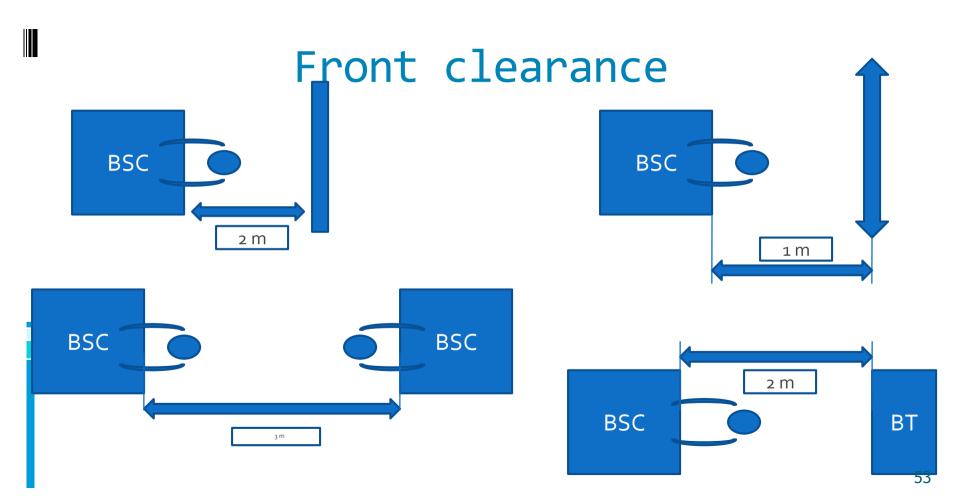



Clean room classification:

- Cleanrooms are classified according to the number and size of particles permitted per volume of air.
- ISO 14644-1 cleanroom standards

ISO classification number (<i>N</i>)	Maximum concentration limits (particles/m ³ of air) for particles equal to and larger than the considered sizes shown below (concentration limits are calculated in accordance with equation (1) in 3.2)					
number (/v)	0,1 µm	0,2 µm	0,3 µm	0,5 µm	1 μm	5 µm
ISO Class 1	10	2				
ISO Class 2	100	24	10	4		
ISO Class 3	1 000	237	102	35	8	
ISO Class 4	10 000	2 370	1 020	352	83	
ISO Class 5	100 000	23 700	10 200	3 520	832	29
ISO Class 6	1 000 000	237 000	102 000	35 200	8 320	293
ISO Class 7				352 000	83 200	2 930
ISO Class 8				3 520 000	832 000	29 300
ISO Class 9				35 200 000	8 320 000	293 000
NOTE Uncertainties related to the measurement process require that concentration data with no more than three significant figures be used in determining the classification level						


Cabinet installation



Min recommended by NSF/ANSI 49

Distance to Door

Components of an IV program equipments

- refrigeration
 - The introduction of a needle into a sterile product is associated with risk of contamination
 - Microbial growth is retarded under refrigeration

Components of an IV program equipments

References

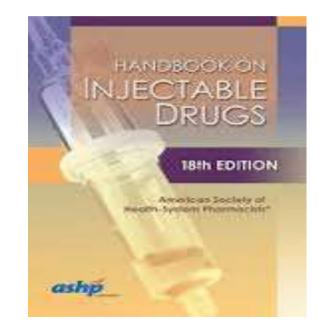
- Handbook of injectable drug from ASHP
- We referenced compatibly and stability charts are also necessary in an IV preparation area (manufacturer)
- Standardized compounding charts

Drug	Size	Diluent	Amount to add	Approximate final diluted concentration	Expiration date (days)
Cefazolin	250 mg 500 mg 1 g 10 g	Bacterio- static water	2 mL 2 mL 2.5 mL 45 mL	125 mg/mL 250 mg/mL 400 mg/mL 1,000 mg/mL	10"r 10 r 10 r 10 r
Nafcillin	500 mg 1 g 2 g 10 g	Bacterio- static water	1.7 mL 3.4 mL 6.8 mL 43.0 mL	500 mg/2 mL 1,000 mg/4 mL 1,000 mg/4 mL 1,000 mg/5 mL	7 r 7 r 7 r 7 r

Table 19-5. Examples of charts for admixture preparation

40 mg/mL: 30 mg=0.75 mL 20 mg=0.5 mL 10 mg=0.25 mL 48 hr r 125 mg/mL: 100 mg=1.6 mL 80 mg=1.3 mL 60 mg=0.96 mL 48 hr r

Gentamicin concentrations for syringes or minibags:


.

40 mg/mL vial:	10 mg=0.25 mL	50 mg=1.25 mL	90 mg=2.25 mL
	15 mg=0.375 mL	55 mg=1.375 mL	95 mg=2.375 mL
	20 mg=0.5 mL	60 mg=1.5 mL	100 mg=2.5 mL
	25 mg=0.625 mL	65 mg=1.625 mL	105 mg=2625 mL
82	30 mg=0.75 mL	70 mg=1.75 mL	110 mg=2.75 mL
	35 mg=0.875 mL	75 mg=1.875 mL	115 mg=2875 mL
	45 mg=1.125 mL	85 mg=2.125 mL	125 mg=3.125 mL

Components of an IV program equipments

References

- www.globalrph.com
- www.medscape.com
- www.lexicomponline.com
- www.uptodate.com
- www.micromedex.com

- Components of an IV program Personnel
- Carefully trained
- Who will prepare? Pharmacist or technician
- Proper training in aseptic technique and sterile product information is necessary (training courses, self study programs)

Table 19-7. Steps involved in starting or expanding an IV admixture program

- 1. Review State and hospital governing regulations.
- Review current recommendations from agencies or organizations that have standards of practice.
- Prepare and gain support for rationale in starting or expanding a program.
- 4. Obtain approval from hospital administration.
- Evaluate space and equipment requirements for different types of systems. Rely on help from manufacturers of different systems in coordinating data. Visit other hospital pharmacies to view actual systems in use.
- Assess personnel requirements. The financial impact and availability of additional personnel may necessitate compromise in choosing one type of system over another.
- Experiment with different types of systems. Manufacturers will readily help with trial evaluations.
- Maintain communication between pharmacy and nursing when evaluating systems. Different systems may be more suitable for particular nursing units. The final program may contain several types of admixture systems.
- Prepare or update a thorough policy and procedure manual for the type of system(s) that will be used.

ASHP Guidelines on Handling Hazardous Drugs

Routes of Exposure.

- Numerous studies showed the presence of hazardous drugs in the urine of health care workers.
- Hazardous drugs enter the body through :-
- 1. Inhalation.
- 2. Accidental injection
- 3. Ingestion of contaminated foodstuffs or mouth contact with contaminated hands.
- 4. Dermal absorption.
- While inhalation might be suspected as the primary route of exposure, air sampling studies of pharmacy and clinic environments have often demonstrated low levels of or no airborne contaminants

Recommendations

1-Environment.

- 2-Ventilation Controls.
- 3-Personal Protective Equipment.

1. Environment

- Hazardous drugs should be stored in an area with sufficient general exhaust ventilation to dilute and remove any air born contaminants.
- Due to the hazardous nature of these preparations, a contained environment where air pressure is negative to the surrounding areas or that is protected by an airlock or anteroom is preferred.

2. Ventilation Controls

- Ventilation or engineering controls are devices designed to eliminate or reduce worker exposure to chemical, biological, radiological, ergonomic, and physical hazards.
- Ventilated cabinets are a type of ventilation or engineering control designed for the purpose of worker protection.
- These devices minimize worker exposure by controlling the emission of airborne

Gloves

- Gowns
- Face mask
- Eye goggle

Gloves:

 Powder-free latex gloves are preferred because powder particulates can contaminate the sterile processing area and absorb hazardous drug contaminants, which may increase the potential for dermal contact.

Gowns and over head

 compounding in the laminar flow hood, administration, spill control, and waste management to protect the worker from contamination by fugitive drug generated during the handling process.

Face mask and Eye goggle

 Also these kits used as protective tools from spilling and prevent inhalation of cytotoxic drugs

Small volume IV infusion Manufacture's drug packaging

- Glass ampoules
- Single dose vials

Drug in solution, lyophilized or powdered drugs

Multiple dose containers

Drug in solution, lyophilized pr powdered drugs

Prefilled syringes

Specialized admixtures

Nutritional

chemotherapy

Oscar Pistorius