Limit test for chloride(borax)

Aim of the experiment: To carry out limit test for chloride in the given sample borax

Apparatus required: Nessle's cylinder, Nesseler's stand and glass rod

Chemical required: Dilute nitric acid, 0.0584 percentase w/v solution of Nacl, 0.1N silver nitrile

Principle:

Limit test of chloride is based on the reaction of soluble chloride with silver nitrate in presence of dilute nitric acid to form silver chloride, which appears as solid particles (Opalescence) in the solution.

$$NaCl + AgNO_3$$
 $\xrightarrow{HNO_3}$ $AgCl + NaNO_3$

Procedure:

Test sample	Standard compound
Specific weight of compound is	Take 1ml of 0.05845 % W/V
dissolved in water or solution is	solution of sodium chloride in
prepared as directed in the	Nessler cylinder
pharmacopoeia and transferred in	
Nessler cylinder	
Add 1ml of nitric acid	Add 1ml of nitric acid
Dilute to 50ml in Nessler cylinder	Dilute to 50ml in Nessler cylinder
Add 1ml of AgNO ₃ solution	Add 1ml of AgNO ₃ solution
Keep aside for 5 min	Keep aside for 5 min
Observe the Opalescence/Turbidity	Observe the Opalescence/Turbidity

Observation:

The opalescence produce in sample solution should not be greater than standard solution. If opalescence produces in sample solution is less than the standard solution, the sample will pass the limit test of chloride and visa versa.

Reasons:

Nitric acid is added in the limit test of chloride to make solution acidic and helps silver chloride precipitate to make solution turbid at the end of process.