LINKAGE IN GENETICS

Dr. Mangesh Bhosale

- Introduction
- Definition
- Theories of linkage
- Types of linkage
- Importance of linkage

Introduction

- Mendel's low of segregation states that when two or more than two factor are considered together ,these factor show independent and random assorted during distribution of gametes.
- During meiosis in F1 generation progeny (AaBb) maternal and paternal factor are independent assorted into gametes.
- Four types of gametes (AB, Ab, aB & ab) will be produce equal proportion (1:1:1:1).

- Dihybrid F2 ratio of 9:3:3:1 and test cross ratio (1:1:1:1) are actully based on the low independent assortment.
- This assortments of characters is based on independent assortment of non homologous chromosomes ; these will be located on seperated non homologous chromosome.

- Some time if more than two genes are locate on same chromosome, independent assortment does not takes place, instead the would be inherited together in a group.
- Genes present on same chromosomes and inherited together are called as linked gene and the process is called as linkage. "
- The principle of linkage was 1st discovered by Bateson and Punnet in 1906 in sweet pea (Lathyrus odoratus).
- Total number of linkage group in an organism is equal to the number of homologous chromosomes (pair of chromosomes).
- Linkage group Human beings 23
 Drosophila 04
 Sweet pea 07

Definition

According to Morgan (1910) he define linkage as -

"The tendency of gene present on the same chromosome, to remain in the original combination and enter together same gamete".

Theory of linkage

- 1. Coupling and repulsion theory of linkage
- 2. Chromosomal theory of linkage
- 1. Coupling and repulsion theory of linkage this theory was proposed by W. Bateson & R. C. Punnet (1906), after the study of pea plant
- He take two varieties of pea plant -
- ^{1.} Plant with purple flower 'P' and long pollen (L).
- **II.** Plant with red flower 'p' and round pollen(l).

Here purple flower 'P' & long pollen 'L' are dominant and red flower 'p' & round pollen 'l' are recessive.

When a cross is made b/w purple flower long pollen "PPLL" and red flower round pollen "ppll".F1 gen.... Only "PpLI" produce..

When f1 hybrid were test cross with double recessive red & round (homozygous) they failed to produce expected ratio 1:1:1:1ratio
 These usually produce four combination in ratio 7:1:1:7.

- Above test cross show the parental combination are seven time more than the non parental combination.
- Bateson & punnet suggest " the alleles coming from the same parent tend to enter same gamet and to be inherited together . This is called genetic coupling.

Cont...

In same way " the genes or alleles coming from two different parents tend to enter different gametes and to be inherited independentlly". This is called genetic repulsion.

Conti...

2. Chromosomal theory propose by Morgan and Castle in 1910 According to this theory –

1. Gene which is locate on the same chromosome show linkage.

- 2. The linked genes are locate same chromosome in a linear sequence with a definite and constant order in its arrangement.
- 3. The strength of linkage depends upon the distance b/w gene.

 $D \approx 1/S \text{ or } S \approx 1/D$

Here D = distance b/t gene , S = Strength of linkage D = K. 1/S

K = constant known as linkage4. Cis – arrangement & trans arrangement of genes

Types of linkage

- 1. Complete linkage
- 2. Incomplete linkage
- 1. **Complete linkage** In a complete linkage two or more character are inherited together and these character are appear in two or more generations. Ex. Drosophila (male)

2. Incomplete linkage – this type of linkage found many plant and animals.

Here chromosomes break accidently either in one or several places.

Important of linkage

- 1. Linkage help to know the characters of parents.
- 2. It helps to know the probability of origin of new characters in off springs.
- 3. It helps in the control of many characters of organisms by controlling inheritance of linkage groups.

THANK YOU FOR YOUR ATTENTION

