Water

- Most biochemical reactions occur in an aqueous environment.
- Water is highly polar because of its bent geometry.
- Water is highly cohesive because of intermolecular hydrogen bonding.
- Water participates in H-bonding with biomolecules.

Ionization of water: $H_2O + H_2O \Leftrightarrow H_3O^+ + OH^-$

pH, Acids and Bases

- $pH = -log [H^+]$
- pOH = -log [OH⁻] ([H⁺] and [OH⁻] in M)
- $[H^+] \times [OH^-] = 1 \times 10^{-14} M^2 / pH + pOH = 14$
- An acid is defined as a proton donor
- AH = $A^- + H^+$
- AH is the acid and A⁻ is its conjugate base.
- A base is defined as a proton acceptor
- $\mathbf{B} + \mathbf{H}_2\mathbf{O} = \mathbf{B}\mathbf{H}^+ + \mathbf{O}\mathbf{H}^-$
- B is the base and BH⁺ is its conjugate acid

The pH scale

An acidic solution is one in which [H⁺] > [OH⁻]

- •In an **acidic solution**, [H⁺] > 10⁻⁷, **pH < 7**.
- •A basic solution is when $[OH^-] > [H^+].$
- •In a **basic solution**, [OH⁻] > 10⁻⁷, **pOH < 7**, and **pH >7**.
- When the pH = 7, the solution is neutral.

•Physiological pH range is 6.5 to 8.0

Weak Acids and pKa

- The strength of an acid can be determined by its dissociation constant, Ka.
- Acids that do not dissociate significantly in water are weak acids.
- The dissociation of an acid is expressed by the following reaction: HA = H⁺ + A⁻ and

the dissociation constant $\mathbf{Ka} = [\mathbf{H}^+][\mathbf{A}^-] / [\mathbf{HA}]$

- When Ka < 1, [HA] > [H⁺][A⁻] and HA is not significantly dissociated. Thus, HA is a weak acid when ka < 1.
- The lesser the value of Ka, the weaker the acid.
- Similar to pH, the value of Ka can also be represented as pKa.
- pKa = -log Ka.
- The larger the pKa, the weaker the acid.
- pKa is a constant for each conjugate acid and its conjugate base pair.
- Most biological compounds are weak acids or weak bases.

Polyprotic Acids

- Some acids are polyprotic acids; they can lose more than one proton.
- In this case, the conjugate base is also a weak acid.
- For example: Carbonic acid (H_2CO_3) can lose two protons sequentially.
- Each dissociation has a unique Ka and pKa value.

 $Ka_1 = [H^+][HCO_3^-] / [H_2CO_3]$ $Ka_2 = [H^+][CO_3^{-2}] / [HCO_3^-]$

Note: (The difference between a weak acid and its conjugate base differ is one hydrogen)

Some weak acids and their conjugate bases

Acid (Proton Donor)		Conjugate Base (Proton Acceptor)		pK_a	$K_{\rm a}({ m M})$
HCOOH Formic acid		HCOO ⁻ Formate ion	$+H^+$	3.75	$1.78 imes10^{-4}$
CH3COOH Acetic acid	<u> </u>	CH ₃ COO ⁻ Acetate ion	$+H^+$	4.76	$1.74 imes10^{-5}$
OH CH₃CH—COOH Lactic acid	<u> </u>	OH CH₃CH—COO [−] Lactate ion	$+\mathrm{H}^+$	3.86	$1.38 imes10^{-4}$
H ₃ PO ₄ Phosphoric acid	<u> </u>	H ₂ PO ₄ ⁻ Dihydrogen phosphate ion	$+\mathrm{H}^+$	2.14	$7.24 imes 10^{-3}$
H₂PO₄ [−] Dihydrogen phosphate ion	~~~~	HPO4 ²⁻ Monohydrogen phosphate ion	$+\mathrm{H}^+$	6.86	$1.38 imes 10^{-7}$
HPO4 ²⁻ Monohydrogen phosphate ion	<u> </u>	PO4 ³⁻ Phosphate ion	$+\mathrm{H}^+$	12.4	$3.98 imes 10^{-13}$
H ₂ CO ₃ Carbonic acid	<u> </u>	HCO₃ [−] Bicarbonate ion	$+\mathrm{H}^+$	6.37	4.27×10^{-7}
HCO3 ⁻ Bicarbonate ion	\rightleftharpoons	CO3 ²⁻ Carbonate ion	$+\mathrm{H}^+$	10.25	$5.62 imes 10^{-11}$
C ₆ H₅OH Phenol	<u> </u>	C ₆ H₅O [−] Phenolate ion	$+H^+$	9.89	$1.29 imes 10^{-10}$
ŇH₄ Ammonium ion	<u> </u>	NH ₃ Ammonia	$+H^+$	9.25	5.62×10^{-10}

Phosphoric acid series
Carbonic acid series

The Henderson-Hasselbalch equation

Dissociation of a weak acid is mathematically described by the **Henderson-Hasselbalch** equation

 $Ka = [H^+][A^-] / [HA]$ or $Ka = [H^+] \times [A^-] / [HA]$ $\log Ka = \log [H^+] + \log \{ [A^-] / [HA] \}$ $-\log[H^+] = -\log Ka + \log \{[A^-] / [HA]\}$ $pH = pKa + \log \{ [A^{-}] / [HA] \}$ So, if CB = conjugate base and WA = weak acid, then: $pH = pKa + log \{[CB] / [WA]\}$ This is the Henderson-Hasselbalch equation Note: pH = pKa when [CB] = [WA]

<u>Applications of the</u> <u>Henderson-Hasselbalch equation</u>

- Calculate the ratio of CB to WA, if pH is given
- Calculate the pH, if ratio of CB to WA is known
- Calculate the pH of a weak acid solution of known concentration
- Determine the pKa of a WA-CB pair
- Calculate change in pH when strong base is added to a solution of weak acid. This is represented in a titration curve
- Calculate the pI

Titration curve for weak acids

- •Initially, [WA] >>> [CB]
- •When [WA]=[CB], pH=pKa
- The central region of the curve (pH<u>+</u>1) is quite flat because:

When [CB]/[WA] = 10, pH = pKa +1;

When [CB]/[WA] = 0.1, pH = pKa - 1

•Titration curve is reversible, if we start adding acid, [WA] increases

Titration of a weak acid with a strong base

- A weak acid is mostly in its conjugate acid form
- When strong base is added, it removes protons from the solution, more and more acid is in the conjugate base form, and the pH increases
- When the moles of base added equals half the total moles of acid, the weak acid and its conjugate base are in equal amounts. The ratio of CB / WA = 1 and according to the HH equation, pH = pKa + log(1) or pH = pKa.
- If more base is added, the conjugate base form becomes greater till the equivalance point when all of the acid is in the conjugate base form.

Buffers

- Biological systems use buffers to maintain pH.
- Definition: A buffer is a solution that resists a significant change in pH upon addition of an acid or a base.
- Chemically: A **buffer is a mixture of a weak acid and its conjugate base**
- Example: Bicarbonate buffer is a mixture of carbonic acid (the weak acid) and the bicarbonate ion (the conjugate base): $H_2CO_3 + HCO_3^{-1}$
- All OH⁻ or H⁺ ions added to a buffer are consumed and the overall [H⁺] or pH is not altered
 H₂CO₃ + HCO₃⁻ + H⁺ ← → 2H₂CO₃
 H₂CO₃ + HCO₃⁻ + OH⁻ ← → 2HCO₃⁻ + H₂O
- For any weak acid / conjugate base pair, the buffering range is its pKa <u>+</u>1.

Mechanism by which Buffers Operate

 $\label{eq:Example: CH_3COOH + CH_3COO^- + OH^- = 2CH_3COO^- + H_2O \ (you get more conjugate base) \\ CH_3COOH + CH_3COO^- + H^+ = 2CH_3COOH \ (you get more weak acid) \\ \end{tabular}$

<u>Ampholytes</u>

- A molecule containing ionizing groups with both acidic and basic pKa values is called an ampholyte.
- The ionic form of each group in the compound is dependent on the pH of the solution.
- If the pH of solution is greater than the pKa, the group is in the conjugate base form (deprotonated).
- If the pH of solution is less than the pKa, the group is in the conjugate acid form (protonated).

Ionic forms of Glycine

•Glycine is H₂N-CH₂-COOH.

•pKa of carboxylate group is 2.3 ; pKa of amino group is 9.6

(Note: glycine can serve as a buffer in 2 different buffer ranges).

•The ionic form with a net charge of zero is called a zwitterion

•The <u>isoelectric point (pI)</u> is the pH at which the net charge on the ampholyte is zero (or equal number of + and - charged ions).

<u>Titration of ampholyte</u> <u>glycine</u>

Carboxylate and amino groups lose their protons successively.

The first mole equivalent of added base converts the carboxylate to its conjugate base; next, the amino group gets deprotonated.

Note the steep jump in pH around the pI.

Calculation of pI for Glycine

- Use the Henderson-Hasselbalch equation to calculate the pI.
- At isoelectric point, pH = pI
- $pI = pK_{COOH} + log [H_3N+CH_2COO-]$ [H_3N+CH_2COOH]

•
$$pI = pK_{NH3+} + log \underline{[H_2NCH_2COO^-]}$$

 $[H_3N^+CH_2COO^-]$

- Adding up: $2pI = pK_{COOH} + pK_{NH3+} + \log \frac{[H_2NCH_2COO^-]}{[H_3N^+CH_2COOH]}$
- When pH=pI, $[H_2NCH_2COO^-]=[H_3N^+CH_2COOH]$
- $2pI = pK_{COOH} + pK_{NH3+}$ or $pI = \{pK_{COOH} + pK_{NH3+}\}/2$