SEMINAR ON

PARENTRALS

1

CONTENTS

- Introduction
- Routes of administration
- Advantages
- Disadvantages
- Preliminary stages
- Formulation
- Manufacture
- Filling
- Packaging
- Sealing
- Sterilization
- Quality control
- Conclusion
- References

INTRODUCTION

DEFINITION

• According to USP :

an injection that is packaged in containers which are sterile and pyrogen free in nature"

"

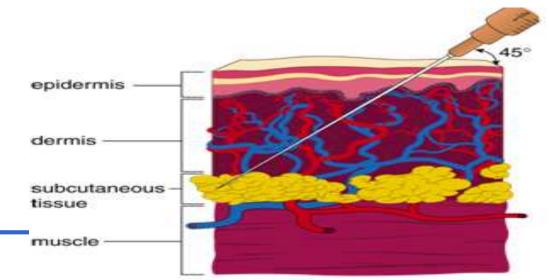
A BRIEF ABOUT PARENTERALS :

- para: outside enteron: intestine
- Any drug or fluid whose delivery does not utilize the alimentary canal for entry into body tissues.
- Parenteral products are injected through the skin or mucous membranes into the internal body compartments.
- These are the preparations which are given other than oral routes.

ROUTES OF ADMINISTRATION

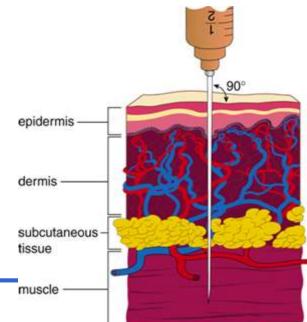
Three primary routes of parenteral administration are commonly employed :

- Subcutaneous
- Intramuscular
- Intravenous

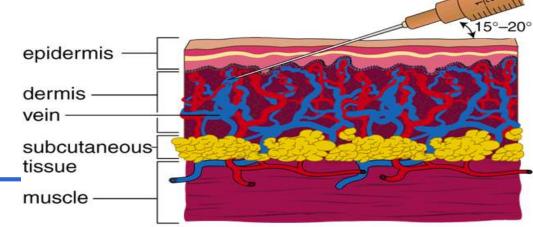

Other routes :

- Intra arterial
- Intra thecal
- Intra articular
- Intra cardial
- Intra ceribral
- Intra peridural
- Intra cisternal

Subcutaneous


- Administer medications below the skin into the subcutaneous fat
- Often have a longer onset of action and a longer duration of action compared with IM or IV injection
- Given at a 45-degree angle
 - 25- or 26-gauge needle, 3/8 to 5/8 inch length
- No more than 1 ml should be injected into the site to avoid pressure on sensory nerves causing pain and discomfort

Intramuscular Injections


- In adults, IM injections are given into upper, outer portion of the gluteus maximus
- For children and some adults, IM injections are given into the deltoid muscles of the shoulders
- Typical needle is 22- 25 gauge ¹/₂- to 1-inch needle
- IM injections are administered at a 90⁰ angle
 - volume limited to less than 2 ml

Intravenous Injections

- Fast-acting route because the drug goes directly into the bloodstream
- often used in the emergency department and in critical care areas
- Commonly used
 - for fluid and electrolyte replacement
 - to provide necessary nutrition to the patient who is critically ill
- Intravenous (IV) injections are administered at a 15- to 20-degree angle
- Volume NMT 1 litre.

Intra-arterial injection


The injection are given directly in to the artery

Intracardiac injection

These are given into the heart muscle or ventricle at the time of emergency only.

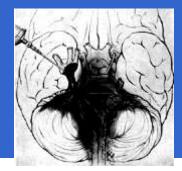
Intrathecal injection

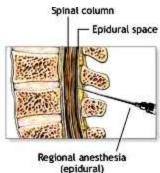
These are given into the subachonoid space the surround the spinal cord. This route is used for spinal anesthesia.

Intracisternal injection

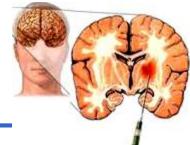
- These are given in b/w first & second cervical nerve.
- Used for CSF for diagnostic purpose.

Peridural injection

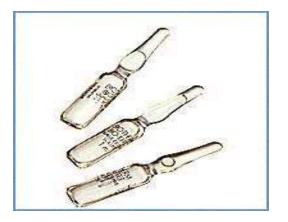

- These are given in b/w the dura matter & inner aspect of vertebra.
- Used for given spinal anesthesia.


Intra-articular injection

- These are given in into the articulating ends of bones in a joint.
- Used for lubricating the joints.


Intracerebral injection

These are given into the cerebrum.



- Parentrals are classified into two types. They are
- 1. Small Volume Parenterals (upto 100ml)

Primary uses of SVP

- Therapeutic injections
- Opthalmic products
- Diagnostic agents
- Allergenic extracts

2. Large Volume Parenterals (100-1000ml)

Clinical Utilization of LVP

- Basic Nutrition
- Restoration of Electrolyte balance
- Fluid replacement
- Blood and blood products
- Drug carriers

ADVANTAGES

- Quick onset of action
- Suitable for the drugs which are not administered by oral route
- Useful for unconscious or vomiting patients.
- Useful for patients who cannot take drugs orally
- Useful for emergency situations
- Duration of action can be prolonged by modifying formulation.
- Can be done in hospitals, ambulatory infusion centers, and home health care

DISADVANTAGES

- Pain on injection.
- Difficult to reverse an administered drug's effects.
- Sensitivity or allergic reaction at the site of injection.
- Requires strict control of sterility & non pyrogenicity than other formulation.
- Only trained person is required
- Require specialized equipment, devices, and techniques to prepare and administer drugs.
- More expensive and costly to produce.

FORMULATION

Aqueous vehicle :

Water For Injection(WFI) USP :

- Highly purified water used as a vehicle for injectable preparations which will be subsequently sterilized.
- USP requirement include not more than 10 parts per million of total solids.
- pH of 5.0 to 7.0
- WFI may prepared by either distillation or reverse osmosis.
- Stored in chemically resistant tank.

Bacteriostatic Water for Injection (BWFI):

- This type of water used for making parenteral solutions prepared under aseptic conditions and not terminally sterilized.
- Need to meet USP sterility test.
- It can contain an added bacteriostatic agent when in containers of 30ml or
 less

Sterile Water for Injection USP

- SWFI containing one or more suitable bacteriostatic agents.
- Multiple-dose containers not exceeding 30 ml.
- They are permitted to contain higher levels of solid than WFI because of the possible leaching .
- Used for Washing wounds, surgical incisions, or body tissues.

Water-miscible vehicles :

• primarily to effect solubility of drugs and/or reduce hydrolysis

Non-aqueous vehicles :

Fixed oils (vegetable origin, liquid, and rancid resistance, unsaturated, free fatty acid content)

- Peanut oil
- Corn oil
- Cotton seed oil (depo-testosterone)
- Sesame oil
- Soybean oil (source of fat in intralipid)
- Ethyl oleate
- Isopropyl myristate

OTHER ADDITIVES

Antibacterial Agents

- Required to prevent microorganism growth
- Limited concentration of agents
 - Phenylmercuric nitrate and Thiomersol 0.01%
 - Benzethonium chloride and benzalkonium chloride 0.01%
 - Phenol or cresol 0.5%
 - Chlorobutanol 0.5%

Buffers

- Added to maintain pH
- Results in stability
- Effective range, concentration, chemical effect
 - Citrate and Acetate buffer
 - Sodium benzoate and benzoic acid
 - Sodium titrate and tartaric acid
 - Phosphate buffer

Antioxidant -

• Included to the formulation to protect from oxidation

Two types

- Reducing agent.eg- ascorbic acid, sodium bisulfite,thiourea
- Blocking agent.eg- BHT, Tocopherol

Surfactants-

Included to solublise the active ingredient

- polyoxyethylene sorbitan monooleate
- sorbitan monooleate

Tonicity Agents

Chelating agent

- contribute to isotonicity of product
- Reduce pain of injection
 - Sodium chloride
 - Potassium chloride
 - Dextrose
 - mannitol
 - sorbitol

ethylenediamine tetraacetic acid