Hereinafter the following convention is used:

Operation Description

horizontal Stacks the given matrices horizontally. The new matrix is $n-b y-m+k$ matrix. stack
given:
$A=\left[\begin{array}{ccc}a_{0,0} & \cdots & a_{0, m-1} \\ \vdots & \ddots & \vdots \\ a_{n-1,0} & \cdots & a_{n-1, m-1}\end{array}\right]_{n \times m}, B=\left[\begin{array}{ccc}b_{00} & \cdots & b_{0, k-1} \\ \vdots & \ddots & \vdots \\ b_{n-1,0} & \cdots & b_{n-1, k-1}\end{array}\right]_{n \times k}$
the result will be:
$\left[\begin{array}{cccccc}a_{0,0} & \cdots & a_{0, m-1} & b_{00} & \cdots & b_{0, k-1} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n-1,0} & \cdots & a_{n-1, m-1} & b_{n-1,0} & \cdots & b_{n-1, k-1}\end{array}\right]_{n \times(m+k)}$

Returning result:

$=$ HorizontalStack(Matrix, Matrix)

Out of place:

$=$ HorizontalStack(Matrix, Matrix, Matrix)

vertical stack Stacks the given matrices vertically. The new matrix is $n+l-b y-m$ matrix.
given:
$A=\left[\begin{array}{ccc}a_{0,0} & \cdots & a_{0, m-1} \\ \vdots & \ddots & \vdots \\ a_{n-1,0} & \cdots & a_{n-1, m-1}\end{array}\right]_{n \times m}, B=\left[\begin{array}{ccc}b_{00} & \cdots & b_{0, m-1} \\ \vdots & \ddots & \vdots \\ b_{l-1,0} & \cdots & b_{l-1, m-1}\end{array}\right]_{l \times m}$
the result will be:
$\left[\begin{array}{ccc}a_{0,0} & \cdots & a_{0, m-1} \\ \vdots & \ddots & \vdots \\ a_{n-1,0} & \cdots & a_{n-1, m-1} \\ b_{00} & \cdots & b_{0, m-1} \\ \vdots & \ddots & \vdots \\ b_{l-1,0} & \cdots & b_{l-1, m-1}\end{array}\right]_{(n+l) \times m}$
Returning result:
$=$ VerticalStack(Matrix, Matrix)
Out of place:

$=$ VerticalStack(Matrix, Matrix, Matrix)

diagonal stack Stacks the given matrices diagonally. The new matrix is $n+l-b y-m+k$ matrix. The values of the off-diagonal blocks are unchanged.
given:
$A=\left[\begin{array}{ccc}a_{0,0} & \cdots & a_{0, m-1} \\ \vdots & \ddots & \vdots \\ a_{n-1,0} & \cdots & a_{n-1, m-1}\end{array}\right]_{n \times m}, B=\left[\begin{array}{ccc}b_{00} & \cdots & b_{0, k-1} \\ \vdots & \ddots & \vdots \\ b_{l-1,0} & \cdots & b_{l-1, k-1}\end{array}\right]_{l \times k}$
the result will be:

$$
\left[\begin{array}{cccccc}
a_{0,0} & \cdots & a_{0, m-1} & & & \\
\vdots & \ddots & \vdots & & & \\
a_{n-1,0} & \cdots & a_{n-1, m-1} & & & \\
& & & b_{00} & \cdots & b_{0, k-1} \\
& & & \vdots & \ddots & \vdots \\
& & & b_{l-1,0} & \cdots & b_{l-1, k-1}
\end{array}\right]_{(n+l) \times(m+k)}
$$

4 $\alpha, \beta, \gamma_{-}$small Greek letters are used to denote scalars;

4 u, v, w_{-}small Latin letters are used to denote vectors;
4 $A, B, C_{\text {- capital }}$ Latin letters are used to denote matrices.
Methods
diagonally.

