Lectures on Machine Learning (Fall 2017)

Hyeong In Choi Seoul National University

Lecture 12: Boosting (II)
Gradient Boosting
(Draft: version 0.5.1)

Topics to be covered:

® XYz

1 Forward stagewise additive model

Recall AdaBoost successively combines weak learners hy(z) to create a
strong learner

glx) =Y wihi(x), (1)

from which the final predictor (classifier) is obtained as H(z) = sgn (g(z)).
The way of combining weak learners successively as in (1) is called a forward
stagewise additive model, or in short, an additive model. The following
is its basic framework [2].

Forward stagewise additive model
Input:

e Data: ® = {(x(i)7y(i))}i]il fori=1,--- N

e Total number of rounds: T

e Loss function L(y, f(z))

e Base learner model h(x,), where 6 is the model parameter

Initialize: Fix fy(x) = constant.
Do fort=1,--- T:

(1) Compute
(Ae, 0r) = argminz L(y(i), ft—l(x(i)> + /\h(x(i)a 0))
o5
(2) Define

few) = fior(z) + Mh(z, 6:)
Output: F(x) = fr(z)

This kind of additive model is in contrast with random forests. Recall
that random forest aggregates fully grown trees, each of which has low bias
but high variance. Thus the principal aim of random forest is to reduce the
variance of the final predictor by aggregating such trees all at once. The
trick is to make such individual trees as independent (small correlation) as
possible, and that is the reason random forest construction is the way it
is. On the other hand, AdaBoost does not require an individual classifier
(learner) to be as accurate. It only requires each individual learner to be
slightly better than a random guess—hence the name weak learner. The gist
of AdaBoost is the way it combines such weak learners to make improvement
successively.

Historically AdaBoost is the first successful example of additive models.
Since then there has been a proliferation of similar ideas, all of which are
dubbed boosting. In this lecture, we cover some of the most salient and most
widely used boosting methods, in particular, the gradient boosting.

2 Exponential loss and AdaBoost

As a way of introduction, let us see how AdaBoost can be cast in the
framework forward stagewise additive model presented in Section 1. First,
define the loss function

L(y, f(x)) = exp(—y f(z)). (2)

2

For AdaBoost the base learner is h(z) € {+1,—1} and y € {+1,—1}. The
Step (1) of forward stagewise additive model can be written in the form

(A, i) = argmin Z exp (_y(i) [fim1 (2@) + An ()])
Ah S

where A A
Wi = eXP(_y(Z)ft—l(x(z)))-

Now (3) can be replaced with the following two stage arguments: First, note
that

Zexp(—)\y(i)h(x(i))) = ¢ Z wm-—l—e’\ Z Wy (4)

YD =h(@®) YD £h(@®)

= Zwt,i + (et —e™) Zwt,i]l(y(i) # h(z?)).

Since the only term depending on A in the line above is the last summation
term, h, of the solution to (3) is gotten by solving

h; = argmin wy (YD # h(z®)),
t gh ; rl(y" # h(z'™))

regardless of the value of A as long as A > 0. To get \; of the solution to (3),
we have only to find)\; that minimizes (4) in which A is replaced with h;.
Since

1
argmin(e A + e*B) = 5 log(A/B),

A
from (4), we get
Wy 4
A= =1 —_—
! 2 Z Wy 4
Y #hi ()

Define the probability distribution

Then it is easy to see that A\; can be written as

1 1—€t
Ao=-1
t QOg(€ >a

where ¢; is the error rate as used in AdaBoost as defined by

€ = Z Dy())I(y™ # hy(z™)).

Now Step (2) of forward stagewise additive model tells us that

fi(x) = fior + Aehe(2).

At the next stage, the new weight w;;; is given as

Wi1,i = eXP(—y(i)ft(fE(i)))
= exp (_y(%) [ft_l(x(l)) + Atht(x(z))])
= W, exp (—)\ty(i)ht(x(i)))

L e iy = W)
T M iy £ py(2®),

Therefore we have

' ' e if y@ = hy(z®
Dt = pi-{ 67 Z)

which is exactly the same formula for the change of probability distribution
in AdaBoost.

3 Gradient boosting machine

3.1 Residual and gradient

Let ® = {(z%,y@)}Y | be a given dataset for a regression problem, and
let f(z) be a regressor we found by some regression algorithm. Its error is

E = Z L(y®, f(z1)),

4

where L(y, f(x)) is an error (loss) of the regressor f at the input point z. For
now, let us assume the L? error

Ly, f()) = 3y F(2))"

Then the error y — f(z®) is called the residual of f at 2. If we can find
a new regressor h(x) such that h(z®) = @ — f(2@) for all i, then the new
regression function F(z) = f(z) + h(x) would have no error as F(z(%)) = 3
for all . It is very rare to find such perfect h(z), so we can try to find h(x)
such that h(z®) ~ y@ — f(z®). If so, the error of F(x) would be smaller
than that of f(x).

Note that if

Lly, f(x)) = 5y~ (@)
the residual y — f(x) can be written as

9
0f ()

Thus these residuals can define a new dataset

y=y—flx) = Ly, f(x)) ()

D = {a",gN,,
where

) — Oy = O p@ gy — 9)
=yt iE) Of (z®) W™, £) of (x) < 7f<x))f(:c)=f(x(i))
(6)

Note h(z) above is the new regressor that fits ®, i.c. h(z) is the one gotten

by using © as a dataset.

3.2 Gradient boosting

The idea in the above section of rewriting the residuals as gradients can be
generalized to the following gradient boosting algorithm, which is basically
due to Friedman [1].

Gradient Boosting
Input:

e Data: ® = {(z,y)N fori=1,---,N
e Total number of rounds: T
e Loss function L(y, f(z))

e Base learner model h(zx,), where 6 is the model parameter

Initialize: Fix fo(x) by letting fo(x) = h(x,0y), where
0y = argmin Ly, h(z®,0)),
o = arg! Z (4, (2", 6))

or one can simply define fy(x) = constant.
Do fort=1,---,T:

e Define

Y Ofia ()

and a new dataset

Ly, fia(2))

D = {(=, 7},
e Fit a new base learner h(z,6,) to the dataset D

e Compute

Ar = argininz L(y(i), ft—l(x(i)) +)\h(x(i)7 0:))

e Define
fi(@) = fioa(z) + Aeh(z, 6;)

Output: F(x) = fr(x)

3.3 Various loss functions

Absolute loss
Ly, f(z)) = |y — f(2)]
Huber loss

S ly=f@PP/2 ifly—flz)| <o
Ly, f@) = { 5y~ flo) —6/2) it ly— f(x) > 6

3.4 Gradient boosting of classifiers

Gradient boosting is not just for regression. It can be applied equally
well to classification problems. To motivate, let us look at AdaBoost again.
In a nutshell, AdaBoost tries to find a classifier f*(z) € {+1,—1} such that

f*(z) = argminEle /™| X = 2]
f(x)
= argmin [e_f(x)P(Y 1| X=2)+/@PY =-1]X=)] .
f(@)
Since

1 PY=1|X=
argmin[eaP(Yz1\X=x>+e‘“P(Y=—1|X=fc>]=§log((| x))’

PY = —1|X =a)

we have

! P(Y =1|X =)
[Hla) =3 lo (P(Y:—1|X:x))

From this, it is easy to see that

1 el (@)

PY=1|X=x2)= 1+ e 2@ oI @ 4ol @

To cast this in the Bernoulli framework, define Y’ = (Y 4+ 1)/2 € {0, 1}.
Let f(x) € {0,1} be a binary classifier and let p(x) = P(Y = 1| X = z).
Then the log-likelihood of Y given p(z) is easily seen to be

1Y, f(x)) = Y'logp(z) + (1 — Y")log(1 — p(x)) = —log(1 + e~ 2/@),

Equivalently the cross entropy, which is equal to the negative log-likelihood,

1S
H(Y', f(2)) = log(1 + ¢~/).

As we have seen in Lecture 3, the minimizer of this cross entropy also leads
to the same solution as the one gotten by AdaBoost. For gradient boost, we
use this cross entropy as a loss function for binary gradient boost.

3.5 Gradient boosting of multiclass classifier

4 Boosting of trees

References

[1] Friedman,J. Greedy boosting approximation: a gradient boosting ma-
chine, Ann.Stat. 29, 11891232

[2] Hastie, T., Tibshirani, R, and Friedman, J., The Elements of Statistical
Learning, 2nd edition, Springer-Verlag (2009)

