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Topics to be covered:

• xyz

1 Forward stagewise additive model

Recall AdaBoost successively combines weak learners ht(x) to create a
strong learner

g(x) =
T∑
t=1

ωtht(x), (1)

from which the final predictor (classifier) is obtained as H(x) = sgn (g(x)) .
The way of combining weak learners successively as in (1) is called a forward
stagewise additive model, or in short, an additive model. The following
is its basic framework [2].

Forward stagewise additive model
Input:

• Data: D = {(x(i), y(i))}Ni=1 for i = 1, · · · , N

• Total number of rounds: T
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• Loss function L(y, f(x) )

• Base learner model h(x, θ), where θ is the model parameter

Initialize: Fix f0(x) = constant.
Do for t = 1, · · · , T :

(1) Compute

(λt, θt) = argmin
λ,θ

∑
i

L(y(i), ft−1(x
(i)) + λh(x(i), θ) )

(2) Define
ft(x) = ft−1(x) + λth(x, θt)

Output: F (x) = fT (x)

This kind of additive model is in contrast with random forests. Recall
that random forest aggregates fully grown trees, each of which has low bias
but high variance. Thus the principal aim of random forest is to reduce the
variance of the final predictor by aggregating such trees all at once. The
trick is to make such individual trees as independent (small correlation) as
possible, and that is the reason random forest construction is the way it
is. On the other hand, AdaBoost does not require an individual classifier
(learner) to be as accurate. It only requires each individual learner to be
slightly better than a random guess–hence the name weak learner. The gist
of AdaBoost is the way it combines such weak learners to make improvement
successively.

Historically AdaBoost is the first successful example of additive models.
Since then there has been a proliferation of similar ideas, all of which are
dubbed boosting. In this lecture, we cover some of the most salient and most
widely used boosting methods, in particular, the gradient boosting.

2 Exponential loss and AdaBoost

As a way of introduction, let us see how AdaBoost can be cast in the
framework forward stagewise additive model presented in Section 1. First,
define the loss function

L(y, f(x)) = exp(−yf(x)). (2)
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For AdaBoost the base learner is h(x) ∈ {+1,−1} and y ∈ {+1,−1}. The
Step (1) of forward stagewise additive model can be written in the form

(λt, ht) = argmin
λ,h

∑
i

exp
(
−y(i)[ft−1(x(i)) + λh(x(i))]

)
= argmin

λ,h

∑
i

wt,i exp(−λy(i)h(x(i))), (3)

where
wt,i = exp(−y(i)ft−1(x(i))).

Now (3) can be replaced with the following two stage arguments: First, note
that∑
i

exp(−λy(i)h(x(i))) = e−λ
∑

y(i)=h(x(i))

wt,i + eλ
∑

y(i) 6=h(x(i))

wt,i (4)

= e−λ
∑
i

wt,i + (eλ − e−λ)
∑
i

wt,iI(y(i) 6= h(x(i))).

Since the only term depending on h in the line above is the last summation
term, ht of the solution to (3) is gotten by solving

ht = argmin
h

∑
i

wt,iI(y(i) 6= h(x(i))),

regardless of the value of λ as long as λ > 0. To get λt of the solution to (3),
we have only to find λt that minimizes (4) in which h is replaced with ht.
Since

argmin
λ

(e−λA+ eλB) =
1

2
log(A/B),

from (4), we get

λt =
1

2
log


∑

y(i)=ht(x(i))

wt,i∑
y(i) 6=ht(x(i))

wt,i

 .

Define the probability distribution

Dt(i) =
wt,i∑
iwt,i

.
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Then it is easy to see that λt can be written as

λt =
1

2
log

(
1− εt
εt

)
,

where εt is the error rate as used in AdaBoost as defined by

εt =
∑
i

Dt(i)I(y(i) 6= ht(x
(i))).

Now Step (2) of forward stagewise additive model tells us that

ft(x) = ft−1 + λtht(x).

At the next stage, the new weight wt+1,i is given as

wt+1,i = exp(−y(i)ft(x(i)))
= exp

(
−y(i)[ft−1(x(i)) + λtht(x

(i))]
)

= wt,i exp
(
−λty(i)ht(x(i))

)
= wt,i ·

{
e−λt if y(i) = ht(x

(i))
eλt if y(i) 6= ht(x

(i)).

Therefore we have

Dt+1(i) ∝ Dt(i) ·
{
e−λt if y(i) = ht(x

(i))
eλt if y(i) 6= ht(x

(i)),

which is exactly the same formula for the change of probability distribution
in AdaBoost.

3 Gradient boosting machine

3.1 Residual and gradient

Let D = {(x(i), y(i))}Ni=1 be a given dataset for a regression problem, and
let f(x) be a regressor we found by some regression algorithm. Its error is

E =
∑
i

L(y(i), f(x(i))),
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where L(y, f(x)) is an error (loss) of the regressor f at the input point x. For
now, let us assume the L2 error

L(y, f(x)) =
1

2
(y − f(x))2.

Then the error y(i)− f(x(i)) is called the residual of f at x(i). If we can find
a new regressor h(x) such that h(x(i)) = y(i) − f(x(i)) for all i, then the new
regression function F (x) = f(x) + h(x) would have no error as F (x(i)) = y(i)

for all i. It is very rare to find such perfect h(x), so we can try to find h(x)
such that h(x(i)) ≈ y(i) − f(x(i)). If so, the error of F (x) would be smaller
than that of f(x).

Note that if

L(y, f(x)) =
1

2
(y − f(x))2,

the residual y − f(x) can be written as

ỹ = y − f(x) = − ∂

∂f(x)
L(y, f(x)) (5)

Thus these residuals can define a new dataset

D̃ = {x(i), ỹ(i)}Ni=1,

where

ỹ(i) = y(i)−f(x(i)) = − ∂

∂f(x(i))
L(y(i), f(x(i))) = − ∂

∂f(x)
L(y(i), f(x) )

∣∣∣∣
f(x)=f(x(i))

(6)

Note h(x) above is the new regressor that fits D̃, i.e. h(x) is the one gotten

by using D̃ as a dataset.

3.2 Gradient boosting

The idea in the above section of rewriting the residuals as gradients can be
generalized to the following gradient boosting algorithm, which is basically
due to Friedman [1].

Gradient Boosting
Input:
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• Data: D = {(x(i), y(i))}Ni=1 for i = 1, · · · , N

• Total number of rounds: T

• Loss function L(y, f(x) )

• Base learner model h(x, θ), where θ is the model parameter

Initialize: Fix f0(x) by letting f0(x) = h(x, θ0), where

θ0 = argmin
θ

∑
i

L(y(i), h(x(i), θ) ),

or one can simply define f0(x) = constant.
Do for t = 1, · · · , T :

• Define

ỹ(i) = − ∂

∂ft−1(x(i))
L(y(i), ft−1(x

(i)) )

and a new dataset
D̃ = {(x(i), ỹ(i))}Ni=1

• Fit a new base learner h(x, θt) to the dataset D̃

• Compute

λt = argmin
λ

∑
i

L(y(i), ft−1(x
(i)) + λh(x(i), θt) )

• Define
ft(x) = ft−1(x) + λth(x, θt)

Output: F (x) = fT (x)

3.3 Various loss functions

Absolute loss
L(y, f(x)) = |y − f(x)|

Huber loss

L(y, f(x)) =

{
|y − f(x)|2 /2 if |y − f(x)| ≤ δ
δ(|y − f(x)| − δ/2) if |y − f(x)| ≥ δ.
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3.4 Gradient boosting of classifiers

Gradient boosting is not just for regression. It can be applied equally
well to classification problems. To motivate, let us look at AdaBoost again.
In a nutshell, AdaBoost tries to find a classifier f ∗(x) ∈ {+1,−1} such that

f ∗(x) = argmin
f(x)

E[e−Y f(X) |X = x]

= argmin
f(x)

[
e−f(x)P (Y = 1 |X = x) + ef(x)P (Y = −1 |X = x)

]
.

Since

argmin
α

[
e−αP (Y = 1 |X = x) + eαP (Y = −1 |X = x)

]
=

1

2
log

(
P (Y = 1 |X = x)

P (Y = −1 |X = x)

)
,

we have

f ∗(x) =
1

2
log

(
P (Y = 1 |X = x)

P (Y = −1 |X = x)

)
.

From this, it is easy to see that

P (Y = 1 |X = x) =
1

1 + e−2f∗(x)
=

ef
∗(x)

e−f∗(x) + ef∗(x)
.

To cast this in the Bernoulli framework, define Y ′ = (Y + 1)/2 ∈ {0, 1}.
Let f(x) ∈ {0, 1} be a binary classifier and let p(x) = P (Y = 1 |X = x).
Then the log-likelihood of Y ′ given p(x) is easily seen to be

l(Y ′, f(x)) = Y ′ log p(x) + (1− Y ′) log(1− p(x)) = − log(1 + e−2f(x)).

Equivalently the cross entropy, which is equal to the negative log-likelihood,
is

H(Y ′, f(x)) = log(1 + e−2f(x)).

As we have seen in Lecture 3, the minimizer of this cross entropy also leads
to the same solution as the one gotten by AdaBoost. For gradient boost, we
use this cross entropy as a loss function for binary gradient boost.

7



3.5 Gradient boosting of multiclass classifier

4 Boosting of trees
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