<u>AIM</u>: To prepare and standardize 0.1 N KMnO₄ solution.

<u>APPARATUS:</u> burette, pipette, conical flask etc.

CHEMICALS: 0.1 N KMnO₄ solution, 0.1 N oxalic acid, dil. H₂SO₄.

<u>PRINCIPLE</u>: In volumetric analysis many reactions involve the process of oxidation and reduction. An oxidizing agent is estimated by titrating with a reducing agent and vice versa. These titrations are called redox titrations. The standardization of KMnO₄ is an example of redox titration. KMnO₄ is a powerful oxidant and in acidic medium it oxidizes oxalic acid to carbon di oxide. The reaction is maintained at 60-70° C during the titration because the reaction proceeds slowly at room temperature. The end point of the titration is the appearance of permanent pink color. No indicator is required as KMnO₄ is a self-indicator.

<u>PROCEDURE</u>: Into a conical flask pipette out exactly10 ml of 0.1 N oxalic acid. Add 10 ml dil H_2SO_4 and boil the contents of the flask upto 70° C. Titrate the contents of the flask against 0.1 N KMnO₄ solution until a faint pink color is obtained. Repeat the titration to get concurrent values.

OBSERVATION TABLE:

	Volume of	Burette reading		Volume of
S.No.	0.1 N oxalic acid			NaOH used (ml)
	(ml)	Initial (ml)	Final (ml)	

FORMULA: The normality of KMnO4 solution is calculated using the formula

 $N_1V_1=N_2V_2$

<u>RESULT</u>: The normality of the given KMnO₄ solution is